Publications by authors named "Alexandra F Elli"

4 Publications

  • Page 1 of 1

Changes in the expression and subcellular distribution of galectin-3 in clear cell renal cell carcinoma.

J Exp Clin Cancer Res 2011 Sep 29;30:89. Epub 2011 Sep 29.

Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Robert-Koch-Str,6, 35037 Marburg, Germany.

Background: Clear cell renal cell carcinoma, a solid growing tumor, is the most common tumor in human kidney. Evaluating the usefulness of β-galactoside binding galectin-3 as a diagnostic marker for this type of cancer could open avenues for preventive and therapeutic strategies by employing specific inhibitors of the lectin. To study a putative correlation between the extent of galectin-3 and the development of clear cell renal cell carcinoma, we monitored the quantity and distribution of this lectin in tissue samples from 39 patients.

Methods: Galectin-3 concentrations in normal, intermediate and tumor tissues were examined by immunofluorescence microscopy and on immunoblots with antibodies directed against galectin-3 and renal control proteins. The cell nuclei were isolated to determine quantities of galectin-3 that were transferred into this compartment in normal or tumor samples.

Results: Immunofluorescence data revealed a mosaic pattern of galectin-3 expression in collecting ducts and distal tubules of normal kidney. Galectin-3 expression was significantly increased in 79% of tumor samples as compared to normal tissues. Furthermore, we observed an increase in nuclear translocation of the lectin in tumor tissues.

Conclusions: Our data indicate that changes in the cellular level of galectin-3 correlate with the development of clear cell renal cell carcinoma, which is in line with previously published data on this specific type of tumor. In most of these studies the lectin tends to be highly expressed in tumor tissues. Furthermore, this study suggests that the increase in the proportion of galectin-3 affects the balance from a cytosolic distribution towards translocation into the nucleus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1756-9966-30-89DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220637PMC
September 2011

Assignment of red antenna states in photosystem I from Thermosynechococcus elongatus by single-molecule spectroscopy.

Biochemistry 2007 Jan;46(3):799-806

Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany.

Single-molecule spectroscopy at cryogenic temperatures was used to elucidate spectral properties, heterogeneities, and dynamics of the chlorophyll a (Chla) molecules responsible for the fluorescence in photosystem I (PSI) from the cyanobacteria Thermosynechococcus elongatus. Absorption and hole burning data suggest the presence of three pools absorbing at wavelengths greater than 700 nm with their absorption maxima at 708, 715, and 719 nm. The responsible Chla molecules are termed C708, C715, and C719. In the emission spectra of single PSI complexes, zero-phonon lines (ZPLs) were observed over the whole red emission range of PSI. The spectral region of the C708 pool is dominated by intense ZPLs; on the other hand, the broad emission of C715/C719 is unstructured and ZPLs are seen in this region much less frequently. Spectral jumps of ZPLs were observed. The dynamics as well as the spectral range covered by such jumps differ for C708 and C715/C719. This heterogeneity is likely caused by differences in the close environment of the chromophores. A tentative assignment of C708 and C715/C719 to Chla dimers and a Chla trimer is discussed, which is based on the remarkable structural differences in the environment of the most probable candidates for the red-most fluorescence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi061975kDOI Listing
January 2007

Large-scale mapping of mutations affecting zebrafish development.

BMC Genomics 2007 Jan 9;8:11. Epub 2007 Jan 9.

Department 3--Genetics, Max-Planck-Institut für Entwicklungsbiologie, Spemannstr, 35/III, 72076 Tübingen, Germany.

Background: Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers.

Results: We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM.

Conclusion: By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2164-8-11DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1781435PMC
January 2007

Red pool chlorophylls of photosystem I of the cyanobacterium Thermosynechococcus elongatus: a single-molecule study.

Biochemistry 2006 Feb;45(5):1454-8

Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.

Photosystem I reaction centers of the cyanobacterium Thermosynechococcus elongatus have been investigated using single-molecule spectroscopy. Single-molecule fluorescence emission spectra reveal a new fluorescence band located at 745 nm. Fluorescence polarization spectroscopy and fluorescence autocorrelation analysis show that only a few chlorophylls are responsible for the photoemission from the Photosystem I trimer at low temperature. Intersystem crossing parameters of the red pool chlorophylls have been determined via fluorescence autocorrelation measurements. The triplet yield of the red chlorophylls is strongly reduced in comparison to chlorophyll a in solution. Strong quenching of the triplet state indicates that the red chlorophylls are located in close contact to carotenoids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi0521700DOI Listing
February 2006
-->