Publications by authors named "Alexandra C Walls"

54 Publications

Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies.

Nature 2021 Aug 31. Epub 2021 Aug 31.

Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500, Bellinzona, Switzerland.

SARS-CoV-2 infection, which involves both cell attachment and membrane fusion, relies on the ACE2 receptor that is paradoxically found at low levels in the respiratory tract, suggesting that additional mechanisms facilitating infection may exist. Here we show that C-type lectin receptors, DC-SIGN, L-SIGN and the sialic acid-binding Ig-like lectin 1 (SIGLEC1) function as attachment receptors by enhancing ACE2-mediated infection and modulating the neutralizing activity of different classes of spike-specific antibodies. Antibodies to the N-terminal domain (NTD) or to the conserved site at the base of the Receptor Binding Domain (RBD), while poorly neutralizing infection of ACE2 over-expressing cells, effectively block lectin-facilitated infection. Conversely, antibodies to the Receptor Binding Motif (RBM), while potently neutralizing infection of ACE2 over-expressing cells, poorly neutralize infection of cells expressing DC-SIGN or L-SIGN and trigger fusogenic rearrangement of the spike promoting cell-to-cell fusion. Collectively, these findings identify a lectin-dependent pathway that enhances ACE2-dependent infection by SARS-CoV-2 and reveal distinct mechanisms of neutralization by different classes of spike-specific antibodies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03925-1DOI Listing
August 2021

Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants.

bioRxiv 2021 Aug 12. Epub 2021 Aug 12.

Worldwide SARS-CoV-2 transmission leads to the recurrent emergence of variants, such as the recently described B.1.617.1 (kappa), B.1.617.2 (delta) and B.1.617.2+ (delta+). The B.1.617.2 (delta) variant of concern is causing a new wave of infections in many countries, mostly affecting unvaccinated individuals, and has become globally dominant. We show that these variants dampen the in vitro potency of vaccine-elicited serum neutralizing antibodies and provide a structural framework for describing the impact of individual mutations on immune evasion. Mutations in the B.1.617.1 (kappa) and B.1.617.2 (delta) spike glycoproteins abrogate recognition by several monoclonal antibodies via alteration of key antigenic sites, including an unexpected remodeling of the B.1.617.2 (delta) N-terminal domain. The binding affinity of the B.1.617.1 (kappa) and B.1.617.2 (delta) receptor-binding domain for ACE2 is comparable to the ancestral virus whereas B.1.617.2+ (delta+) exhibits markedly reduced affinity. We describe a previously uncharacterized class of N-terminal domain-directed human neutralizing monoclonal antibodies cross-reacting with several variants of concern, revealing a possible target for vaccine development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.08.11.455956DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366796PMC
August 2021

Discovery and Characterization of Spike N-Terminal Domain-Binding Aptamers for Rapid SARS-CoV-2 Detection.

Angew Chem Int Ed Engl 2021 09 18;60(39):21211-21215. Epub 2021 Aug 18.

Department of Bioengineering, University of Washington, Seattle, WA, 98105, USA.

The coronavirus disease 2019 (COVID-19) pandemic has devastated families and disrupted healthcare, economies and societies across the globe. Molecular recognition agents that are specific for distinct viral proteins are critical components for rapid diagnostics and targeted therapeutics. In this work, we demonstrate the selection of novel DNA aptamers that bind to the SARS-CoV-2 spike glycoprotein with high specificity and affinity (<80 nM). Through binding assays and high resolution cryo-EM, we demonstrate that SNAP1 (SARS-CoV-2 spike protein N-terminal domain-binding aptamer 1) binds to the S N-terminal domain. We applied SNAP1 in lateral flow assays (LFAs) and ELISAs to detect UV-inactivated SARS-CoV-2 at concentrations as low as 5×10  copies mL . SNAP1 is therefore a promising molecular tool for SARS-CoV-2 diagnostics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202107730DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426805PMC
September 2021

Broad sarbecovirus neutralization by a human monoclonal antibody.

Nature 2021 09 19;597(7874):103-108. Epub 2021 Jul 19.

Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.

The recent emergence of SARS-CoV-2 variants of concern and the recurrent spillovers of coronaviruses into the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here we describe a human monoclonal antibody designated S2X259, which recognizes a highly conserved cryptic epitope of the receptor-binding domain and cross-reacts with spikes from all clades of sarbecovirus. S2X259 broadly neutralizes spike-mediated cell entry of SARS-CoV-2, including variants of concern (B.1.1.7, B.1.351, P.1, and B.1.427/B.1.429), as well as a wide spectrum of human and potentially zoonotic sarbecoviruses through inhibition of angiotensin-converting enzyme 2 (ACE2) binding to the receptor-binding domain. Furthermore, deep-mutational scanning and in vitro escape selection experiments demonstrate that S2X259 possesses an escape profile that is limited to a single substitution, G504D. We show that prophylactic and therapeutic administration of S2X259 protects Syrian hamsters (Mesocricetus auratus) against challenge with the prototypic SARS-CoV-2 and the B.1.351 variant of concern, which suggests that this monoclonal antibody is a promising candidate for the prevention and treatment of emergent variants and zoonotic infections. Our data reveal a key antigenic site that is targeted by broadly neutralizing antibodies and will guide the design of vaccines that are effective against all sarbecoviruses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03817-4DOI Listing
September 2021

Multivalent designed proteins protect against SARS-CoV-2 variants of concern.

bioRxiv 2021 Jul 7. Epub 2021 Jul 7.

Escape variants of SARS-CoV-2 are threatening to prolong the COVID-19 pandemic. To address this challenge, we developed multivalent protein-based minibinders as potential prophylactic and therapeutic agents. Homotrimers of single minibinders and fusions of three distinct minibinders were designed to geometrically match the SARS-CoV-2 spike (S) trimer architecture and were optimized by cell-free expression and found to exhibit virtually no measurable dissociation upon binding. Cryo-electron microscopy (cryoEM) showed that these trivalent minibinders engage all three receptor binding domains on a single S trimer. The top candidates neutralize SARS-CoV-2 variants of concern with IC values in the low pM range, resist viral escape, and provide protection in highly vulnerable human ACE2-expressing transgenic mice, both prophylactically and therapeutically. Our integrated workflow promises to accelerate the design of mutationally resilient therapeutics for pandemic preparedness.

One-sentence Summary: We designed, developed, and characterized potent, trivalent miniprotein binders that provide prophylactic and therapeutic protection against emerging SARS-CoV-2 variants of concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.07.07.451375DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282097PMC
July 2021

Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design.

Front Immunol 2021 29;12:710263. Epub 2021 Jun 29.

Institute for Protein Design, University of Washington, Seattle, WA, United States.

The unprecedented global demand for SARS-CoV-2 vaccines has demonstrated the need for highly effective vaccine candidates that are thermostable and amenable to large-scale manufacturing. Nanoparticle immunogens presenting the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein (S) in repetitive arrays are being advanced as second-generation vaccine candidates, as they feature robust manufacturing characteristics and have shown promising immunogenicity in preclinical models. Here, we used previously reported deep mutational scanning (DMS) data to guide the design of stabilized variants of the RBD. The selected mutations fill a cavity in the RBD that has been identified as a linoleic acid binding pocket. Screening of several designs led to the selection of two lead candidates that expressed at higher yields than the wild-type RBD. These stabilized RBDs possess enhanced thermal stability and resistance to aggregation, particularly when incorporated into an icosahedral nanoparticle immunogen that maintained its integrity and antigenicity for 28 days at 35-40°C, while corresponding immunogens displaying the wild-type RBD experienced aggregation and loss of antigenicity. The stabilized immunogens preserved the potent immunogenicity of the original nanoparticle immunogen, which is currently being evaluated in a Phase I/II clinical trial. Our findings may improve the scalability and stability of RBD-based coronavirus vaccines in any format and more generally highlight the utility of comprehensive DMS data in guiding vaccine design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2021.710263DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276696PMC
July 2021

SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape.

Nature 2021 09 14;597(7874):97-102. Epub 2021 Jul 14.

Humabs BioMed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland.

An ideal therapeutic anti-SARS-CoV-2 antibody would resist viral escape, have activity against diverse sarbecoviruses, and be highly protective through viral neutralization and effector functions. Understanding how these properties relate to each other and vary across epitopes would aid the development of therapeutic antibodies and guide vaccine design. Here we comprehensively characterize escape, breadth and potency across a panel of SARS-CoV-2 antibodies targeting the receptor-binding domain (RBD). Despite a trade-off between in vitro neutralization potency and breadth of sarbecovirus binding, we identify neutralizing antibodies with exceptional sarbecovirus breadth and a corresponding resistance to SARS-CoV-2 escape. One of these antibodies, S2H97, binds with high affinity across all sarbecovirus clades to a cryptic epitope and prophylactically protects hamsters from viral challenge. Antibodies that target the angiotensin-converting enzyme 2 (ACE2) receptor-binding motif (RBM) typically have poor breadth and are readily escaped by mutations despite high neutralization potency. Nevertheless, we also characterize a potent RBM antibody (S2E12) with breadth across sarbecoviruses related to SARS-CoV-2 and a high barrier to viral escape. These data highlight principles underlying variation in escape, breadth and potency among antibodies that target the RBD, and identify epitopes and features to prioritize for therapeutic development against the current and potential future pandemics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03807-6DOI Listing
September 2021

SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern.

Science 2021 08 1;373(6555):648-654. Epub 2021 Jul 1.

Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.

A novel variant of concern (VOC) named CAL.20C (B.1.427/B.1.429), which was originally detected in California, carries spike glycoprotein mutations S13I in the signal peptide, W152C in the N-terminal domain (NTD), and L452R in the receptor-binding domain (RBD). Plasma from individuals vaccinated with a Wuhan-1 isolate-based messenger RNA vaccine or from convalescent individuals exhibited neutralizing titers that were reduced 2- to 3.5-fold against the B.1.427/B.1.429 variant relative to wild-type pseudoviruses. The L452R mutation reduced neutralizing activity in 14 of 34 RBD-specific monoclonal antibodies (mAbs). The S13I and W152C mutations resulted in total loss of neutralization for 10 of 10 NTD-specific mAbs because the NTD antigenic supersite was remodeled by a shift of the signal peptide cleavage site and the formation of a new disulfide bond, as revealed by mass spectrometry and structural studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abi7994DOI Listing
August 2021

Detection of antibodies neutralizing historical and emerging SARS-CoV-2 strains using a thermodynamically coupled de novo biosensor system.

bioRxiv 2021 Jun 22. Epub 2021 Jun 22.

With global vaccination efforts against SARS-CoV-2 underway, there is a need for rapid quantification methods for neutralizing antibodies elicited by vaccination and characterization of their strain dependence. Here, we describe a designed protein biosensor that enables sensitive and rapid detection of neutralizing antibodies against wild type and variant SARS-CoV-2 in serum samples. More generally, our thermodynamic coupling approach can better distinguish sample to sample differences in analyte binding affinity and abundance than traditional competition based assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.06.22.449355DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240681PMC
June 2021

Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

Nature 2021 07 7;595(7869):707-712. Epub 2021 Jun 7.

Biozentrum, University of Basel, Basel, Switzerland.

Following its emergence in late 2019, the spread of SARS-CoV-2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03677-yDOI Listing
July 2021

Structural basis for broad coronavirus neutralization.

Nat Struct Mol Biol 2021 06 12;28(6):478-486. Epub 2021 May 12.

Department of Biochemistry, University of Washington, Seattle, WA, USA.

Three highly pathogenic β-coronaviruses have crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. To evaluate the possibility of identifying antibodies with broad neutralizing activity, we isolated a monoclonal antibody, termed B6, that cross-reacts with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses. B6 broadly neutralizes entry of pseudotyped viruses from lineages A and C, but not from lineage B, and the latter includes SARS-CoV and SARS-CoV-2. Cryo-EM, X-ray crystallography and membrane fusion assays reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery. The data indicate that antibody binding sterically interferes with the spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages, along with a proof of concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-β-coronavirus vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-021-00596-4DOI Listing
June 2021

Adjuvanting a subunit COVID-19 vaccine to induce protective immunity.

Nature 2021 06 19;594(7862):253-258. Epub 2021 Apr 19.

Tulane National Primate Research Center, Covington, LA, USA.

The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03530-2DOI Listing
June 2021

Structural basis for broad sarbecovirus neutralization by a human monoclonal antibody.

bioRxiv 2021 Apr 8. Epub 2021 Apr 8.

Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland.

The recent emergence of SARS-CoV-2 variants of concern (VOC) and the recurrent spillovers of coronaviruses in the human population highlight the need for broadly neutralizing antibodies that are not affected by the ongoing antigenic drift and that can prevent or treat future zoonotic infections. Here, we describe a human monoclonal antibody (mAb), designated S2×259, recognizing a highly conserved cryptic receptor-binding domain (RBD) epitope and cross-reacting with spikes from all sarbecovirus clades. S2×259 broadly neutralizes spike-mediated entry of SARS-CoV-2 including the B.1.1.7, B.1.351, P.1 and B.1.427/B.1.429 VOC, as well as a wide spectrum of human and zoonotic sarbecoviruses through inhibition of ACE2 binding to the RBD. Furthermore, deep-mutational scanning and escape selection experiments demonstrate that S2×259 possesses a remarkably high barrier to the emergence of resistance mutants. We show that prophylactic administration of S2×259 protects Syrian hamsters against challenges with the prototypic SARS-CoV-2 and the B.1.351 variant, suggesting this mAb is a promising candidate for the prevention and treatment of emergent VOC and zoonotic infections. Our data unveil a key antigenic site targeted by broadly-neutralizing antibodies and will guide the design of pan-sarbecovirus vaccines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.04.07.438818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8043460PMC
April 2021

SARS-CoV-2 immune evasion by variant B.1.427/B.1.429.

bioRxiv 2021 Apr 1. Epub 2021 Apr 1.

SARS-CoV-2 entry is mediated by the spike (S) glycoprotein which contains the receptor-binding domain (RBD) and the N-terminal domain (NTD) as the two main targets of neutralizing antibodies (Abs). A novel variant of concern (VOC) named CAL.20C (B.1.427/B.1.429) was originally detected in California and is currently spreading throughout the US and 29 additional countries. It is unclear whether antibody responses to SARS-CoV-2 infection or to the prototypic Wuhan-1 isolate-based vaccines will be impacted by the three B.1.427/B.1.429 S mutations: S13I, W152C and L452R. Here, we assessed neutralizing Ab responses following natural infection or mRNA vaccination using pseudoviruses expressing the wildtype or the B.1.427/B.1.429 S protein. Plasma from vaccinated or convalescent individuals exhibited neutralizing titers, which were reduced 3-6 fold against the B.1.427/B.1.429 variant relative to wildtype pseudoviruses. The RBD L452R mutation reduced or abolished neutralizing activity of 14 out of 35 RBD-specific monoclonal antibodies (mAbs), including three clinical-stage mAbs. Furthermore, we observed a complete loss of B.1.427/B.1.429 neutralization for a panel of mAbs targeting the N-terminal domain due to a large structural rearrangement of the NTD antigenic supersite involving an S13I-mediated shift of the signal peptide cleavage site. These data warrant closer monitoring of signal peptide variants and their involvement in immune evasion and show that Abs directed to the NTD impose a selection pressure driving SARS-CoV-2 viral evolution through conventional and unconventional escape mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.31.437925DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8020983PMC
April 2021

Designed proteins assemble antibodies into modular nanocages.

Science 2021 04;372(6537)

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

Multivalent display of receptor-engaging antibodies or ligands can enhance their activity. Instead of achieving multivalency by attachment to preexisting scaffolds, here we unite form and function by the computational design of nanocages in which one structural component is an antibody or Fc-ligand fusion and the second is a designed antibody-binding homo-oligomer that drives nanocage assembly. Structures of eight nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage, respectively, closely match the corresponding computational models. Antibody nanocages targeting cell surface receptors enhance signaling compared with free antibodies or Fc-fusions in death receptor 5 (DR5)-mediated apoptosis, angiopoietin-1 receptor (Tie2)-mediated angiogenesis, CD40 activation, and T cell proliferation. Nanocage assembly also increases severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-angiotensin-converting enzyme 2 (ACE2) fusion proteins.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abd9994DOI Listing
April 2021

N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2.

Cell 2021 04 16;184(9):2332-2347.e16. Epub 2021 Mar 16.

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.

The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite (designated site i) recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge, albeit selecting escape mutants in some animals. Indeed, several SARS-CoV-2 variants, including the B.1.1.7, B.1.351, and P.1 lineages, harbor frequent mutations within the NTD supersite, suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs for protective immunity and vaccine design.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.03.028DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962585PMC
April 2021

Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines.

bioRxiv 2021 Mar 16. Epub 2021 Mar 16.

Understanding the ability of SARS-CoV-2 vaccine-elicited antibodies to neutralize and protect against emerging variants of concern and other sarbecoviruses is key for guiding vaccine development decisions and public health policies. We show that a clinical stage multivalent SARS-CoV-2 receptor-binding domain nanoparticle vaccine (SARS-CoV-2 RBD-NP) protects mice from SARS-CoV-2-induced disease after a single shot, indicating that the vaccine could allow dose-sparing. SARS-CoV-2 RBD-NP elicits high antibody titers in two non-human primate (NHP) models against multiple distinct RBD antigenic sites known to be recognized by neutralizing antibodies. We benchmarked NHP serum neutralizing activity elicited by RBD-NP against a lead prefusion-stabilized SARS-CoV-2 spike immunogen using a panel of single-residue spike mutants detected in clinical isolates as well as the B.1.1.7 and B.1.351 variants of concern. Polyclonal antibodies elicited by both vaccines are resilient to most RBD mutations tested, but the E484K substitution has similar negative consequences for neutralization, and exhibit modest but comparable neutralization breadth against distantly related sarbecoviruses. We demonstrate that mosaic and cocktail sarbecovirus RBD-NPs elicit broad sarbecovirus neutralizing activity, including against the SARS-CoV-2 B.1.351 variant, and protect mice against severe SARS-CoV challenge even in the absence of the SARS-CoV RBD in the vaccine. This study provides proof of principle that sarbecovirus RBD-NPs induce heterotypic protection and enables advancement of broadly protective sarbecovirus vaccines to the clinic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.03.15.435528DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986998PMC
March 2021

Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies.

Nature 2021 05 11;593(7857):136-141. Epub 2021 Mar 11.

Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK.

Transmission of SARS-CoV-2 is uncontrolled in many parts of the world; control is compounded in some areas by the higher transmission potential of the B.1.1.7 variant, which has now been reported in 94 countries. It is unclear whether the response of the virus to vaccines against SARS-CoV-2 on the basis of the prototypic strain will be affected by the mutations found in B.1.1.7. Here we assess the immune responses of individuals after vaccination with the mRNA-based vaccine BNT162b2. We measured neutralizing antibody responses after the first and second immunizations using pseudoviruses that expressed the wild-type spike protein or a mutated spike protein that contained the eight amino acid changes found in the B.1.1.7 variant. The sera from individuals who received the vaccine exhibited a broad range of neutralizing titres against the wild-type pseudoviruses that were modestly reduced against the B.1.1.7 variant. This reduction was also evident in sera from some patients who had recovered from COVID-19. Decreased neutralization of the B.1.1.7 variant was also observed for monoclonal antibodies that target the N-terminal domain (9 out of 10) and the receptor-binding motif (5 out of 31), but not for monoclonal antibodies that recognize the receptor-binding domain that bind outside the receptor-binding motif. Introduction of the mutation that encodes the E484K substitution in the B.1.1.7 background to reflect a newly emerged variant of concern (VOC 202102/02) led to a more-substantial loss of neutralizing activity by vaccine-elicited antibodies and monoclonal antibodies (19 out of 31) compared with the loss of neutralizing activity conferred by the mutations in B.1.1.7 alone. The emergence of the E484K substitution in a B.1.1.7 background represents a threat to the efficacy of the BNT162b2 vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-021-03412-7DOI Listing
May 2021

SARS-CoV-2 B.1.1.7 sensitivity to mRNA vaccine-elicited, convalescent and monoclonal antibodies.

medRxiv 2021 Feb 15. Epub 2021 Feb 15.

Department of Clinical Biochemistry and Immunology, Addenbrookes Hospital, UK.

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b2. We measured neutralising antibody responses following a single immunization using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the Receptor Binding Motif (RBM) (5 out of 31), but not in neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect newly emerging viruses in the UK led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.01.19.21249840DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899479PMC
February 2021

Adjuvanting a subunit SARS-CoV-2 nanoparticle vaccine to induce protective immunity in non-human primates.

bioRxiv 2021 Feb 11. Epub 2021 Feb 11.

The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.02.10.430696DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7885918PMC
February 2021

N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2.

bioRxiv 2021 Jan 14. Epub 2021 Jan 14.

SARS-CoV-2 entry into host cells is orchestrated by the spike (S) glycoprotein that contains an immunodominant receptor-binding domain (RBD) targeted by the largest fraction of neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently. We define an antigenic map of the SARS-CoV-2 NTD and identify a supersite recognized by all known NTD-specific neutralizing mAbs. These mAbs inhibit cell-to-cell fusion, activate effector functions, and protect Syrian hamsters from SARS-CoV-2 challenge. SARS-CoV-2 variants, including the 501Y.V2 and B.1.1.7 lineages, harbor frequent mutations localized in the NTD supersite suggesting ongoing selective pressure and the importance of NTD-specific neutralizing mAbs to protective immunity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2021.01.14.426475DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814825PMC
January 2021

Structural basis for broad coronavirus neutralization.

bioRxiv 2021 Jan 4. Epub 2021 Jan 4.

Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.

Three highly pathogenic β-coronaviruses crossed the animal-to-human species barrier in the past two decades: SARS-CoV, MERS-CoV and SARS-CoV-2. SARS-CoV-2 has infected more than 64 million people worldwide, claimed over 1.4 million lives and is responsible for the ongoing COVID-19 pandemic. We isolated a monoclonal antibody, termed B6, cross-reacting with eight β-coronavirus spike glycoproteins, including all five human-infecting β-coronaviruses, and broadly inhibiting entry of pseudotyped viruses from two coronavirus lineages. Cryo-electron microscopy and X-ray crystallography characterization reveal that B6 binds to a conserved cryptic epitope located in the fusion machinery and indicate that antibody binding sterically interferes with spike conformational changes leading to membrane fusion. Our data provide a structural framework explaining B6 cross-reactivity with β-coronaviruses from three lineages along with proof-of-concept for antibody-mediated broad coronavirus neutralization elicited through vaccination. This study unveils an unexpected target for next-generation structure-guided design of a pan-coronavirus vaccine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.12.29.424482DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781312PMC
January 2021

Designed proteins assemble antibodies into modular nanocages.

bioRxiv 2020 Dec 1. Epub 2020 Dec 1.

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

Antibodies are widely used in biology and medicine, and there has been considerable interest in multivalent antibody formats to increase binding avidity and enhance signaling pathway agonism. However, there are currently no general approaches for forming precisely oriented antibody assemblies with controlled valency. We describe the computational design of two-component nanocages that overcome this limitation by uniting form and function. One structural component is any antibody or Fc fusion and the second is a designed Fc-binding homo-oligomer that drives nanocage assembly. Structures of 8 antibody nanocages determined by electron microscopy spanning dihedral, tetrahedral, octahedral, and icosahedral architectures with 2, 6, 12, and 30 antibodies per nanocage match the corresponding computational models. Antibody nanocages targeting cell-surface receptors enhance signaling compared to free antibodies or Fc-fusions in DR5-mediated apoptosis, Tie2-mediated angiogenesis, CD40 activation, and T cell proliferation; nanocage assembly also increases SARS-CoV-2 pseudovirus neutralization by α-SARS-CoV-2 monoclonal antibodies and Fc-ACE2 fusion proteins. We anticipate that the ability to assemble arbitrary antibodies without need for covalent modification into highly ordered assemblies with different geometries and valencies will have broad impact in biology and medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.12.01.406611DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7724662PMC
December 2020

Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

medRxiv 2021 Mar 24. Epub 2021 Mar 24.

Biozentrum, University of Basel, Basel, Switzerland.

Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). While the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced, allowing continent-specific variants to emerge. However, within Europe travel resumed in the summer of 2020, and the impact of this travel on the epidemic is not well understood. Here we report on a novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and subsequently spread to multiple locations in Europe. We find no evidence of increased transmissibility of this variant, but instead demonstrate how rising incidence in Spain, resumption of travel across Europe, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions and quarantine requirements, we estimate 20E (EU1) was introduced hundreds of times to countries across Europe by summertime travellers, likely undermining local efforts to keep SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become dominant even in absence of a substantial transmission advantage in favorable epidemiological settings. Genomic surveillance is critical to understanding how travel can impact SARS-CoV-2 transmission, and thus for informing future containment strategies as travel resumes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.10.25.20219063DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709189PMC
March 2021

Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2.

Cell 2020 11 31;183(5):1367-1382.e17. Epub 2020 Oct 31.

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA.

A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.10.043DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604136PMC
November 2020

Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology.

Cell 2020 11 16;183(4):1024-1042.e21. Epub 2020 Sep 16.

III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy.

Analysis of the specificity and kinetics of neutralizing antibodies (nAbs) elicited by SARS-CoV-2 infection is crucial for understanding immune protection and identifying targets for vaccine design. In a cohort of 647 SARS-CoV-2-infected subjects, we found that both the magnitude of Ab responses to SARS-CoV-2 spike (S) and nucleoprotein and nAb titers correlate with clinical scores. The receptor-binding domain (RBD) is immunodominant and the target of 90% of the neutralizing activity present in SARS-CoV-2 immune sera. Whereas overall RBD-specific serum IgG titers waned with a half-life of 49 days, nAb titers and avidity increased over time for some individuals, consistent with affinity maturation. We structurally defined an RBD antigenic map and serologically quantified serum Abs specific for distinct RBD epitopes leading to the identification of two major receptor-binding motif antigenic sites. Our results explain the immunodominance of the receptor-binding motif and will guide the design of COVID-19 vaccines and therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.09.037DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494283PMC
November 2020

De novo design of picomolar SARS-CoV-2 miniprotein inhibitors.

Science 2020 10 9;370(6515):426-431. Epub 2020 Sep 9.

Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.

Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC ~ 0.16 nanograms per milliliter). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abd9909DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857403PMC
October 2020
-->