Publications by authors named "Alex Astashyn"

4 Publications

  • Page 1 of 1

Locus Reference Genomic: reference sequences for the reporting of clinically relevant sequence variants.

Nucleic Acids Res 2014 Jan 26;42(Database issue):D873-8. Epub 2013 Nov 26.

European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, National Center for Biotechnology Information, Bethesda, MD 20894, USA, and Department of Genetics, University of Leicester, Leicester LE1 7RH, UK.

Locus Reference Genomic (LRG; http://www.lrg-sequence.org/) records contain internationally recognized stable reference sequences designed specifically for reporting clinically relevant sequence variants. Each LRG is contained within a single file consisting of a stable 'fixed' section and a regularly updated 'updatable' section. The fixed section contains stable genomic DNA sequence for a genomic region, essential transcripts and proteins for variant reporting and an exon numbering system. The updatable section contains mapping information, annotation of all transcripts and overlapping genes in the region and legacy exon and amino acid numbering systems. LRGs provide a stable framework that is vital for reporting variants, according to Human Genome Variation Society (HGVS) conventions, in genomic DNA, transcript or protein coordinates. To enable translation of information between LRG and genomic coordinates, LRGs include mapping to the human genome assembly. LRGs are compiled and maintained by the National Center for Biotechnology Information (NCBI) and European Bioinformatics Institute (EBI). LRG reference sequences are selected in collaboration with the diagnostic and research communities, locus-specific database curators and mutation consortia. Currently >700 LRGs have been created, of which >400 are publicly available. The aim is to create an LRG for every locus with clinical implications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nar/gkt1198DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965024PMC
January 2014

Locus Reference Genomic sequences: an improved basis for describing human DNA variants.

Genome Med 2010 Apr 15;2(4):24. Epub 2010 Apr 15.

Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, UK.

As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specific purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-file record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)-approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants affecting human health. Further information can be found on the LRG web site: http://www.lrg-sequence.org.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/gm145DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873802PMC
April 2010

The completion of the Mammalian Gene Collection (MGC).

Genome Res 2009 Dec 18;19(12):2324-33. Epub 2009 Sep 18.

Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without restriction to researchers worldwide.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.095976.109DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792178PMC
December 2009

The genome sequence of taurine cattle: a window to ruminant biology and evolution.

Science 2009 Apr;324(5926):522-8

To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.1169588DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2943200PMC
April 2009
-->