Publications by authors named "Alessia Casolaro"

3 Publications

  • Page 1 of 1

The Polo-Like Kinase 1 (PLK1) inhibitor NMS-P937 is effective in a new model of disseminated primary CD56+ acute monoblastic leukaemia.

PLoS One 2013 8;8(3):e58424. Epub 2013 Mar 8.

Oncology, Nerviano Medical Sciences, Nerviano, Milano, Italy.

CD56 is expressed in 15-20% of acute myeloid leukaemias (AML) and is associated with extramedullary diffusion, multidrug resistance and poor prognosis. We describe the establishment and characterisation of a novel disseminated model of AML (AML-NS8), generated by injection into mice of leukaemic blasts freshly isolated from a patient with an aggressive CD56(+) monoblastic AML (M5a). The model reproduced typical manifestations of this leukaemia, including presence of extramedullary masses and central nervous system involvement, and the original phenotype, karyotype and genotype of leukaemic cells were retained in vivo. Recently Polo-Like Kinase 1 (PLK1) has emerged as a new candidate drug target in AML. We therefore tested our PLK1 inhibitor NMS-P937 in this model either in the engraftment or in the established disease settings. Both schedules showed good efficacy compared to standard therapies, with a significant increase in median survival time (MST) expecially in the established disease setting (MST = 28, 36, 62 days for vehicle, cytarabine and NMS-P937, respectively). Importantly, we could also demonstrate that NMS-P937 induced specific biomarker modulation in extramedullary tissues. This new in vivo model of CD56(+) AML that recapitulates the human tumour lends support for the therapeutic use of PLK1 inhibitors in AML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0058424PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592825PMC
September 2013

NMS-P937, an orally available, specific small-molecule polo-like kinase 1 inhibitor with antitumor activity in solid and hematologic malignancies.

Mol Cancer Ther 2012 Apr 7;11(4):1006-16. Epub 2012 Feb 7.

Nerviano Medical Sciences Srl, Nerviano, Milan, Italy.

Polo-like kinase 1 (PLK1) is a serine/threonine protein kinase considered to be the master player of cell-cycle regulation during mitosis. It is indeed involved in centrosome maturation, bipolar spindle formation, chromosome separation, and cytokinesis. PLK1 is overexpressed in a variety of human tumors and its overexpression often correlates with poor prognosis. Although five different PLKs are described in humans, depletion or inhibition of kinase activity of PLK1 is sufficient to induce cell-cycle arrest and apoptosis in cancer cell lines and in xenograft tumor models. NMS-P937 is a novel, orally available PLK1-specific inhibitor. The compound shows high potency in proliferation assays having low nanomolar activity on a large number of cell lines, both from solid and hematologic tumors. NMS-P937 potently causes a mitotic cell-cycle arrest followed by apoptosis in cancer cell lines and inhibits xenograft tumor growth with clear PLK1-related mechanism of action at well-tolerated doses in mice after oral administration. In addition, NMS-P937 shows potential for combination in clinical settings with approved cytotoxic drugs, causing tumor regression in HT29 human colon adenocarcinoma xenografts upon combination with irinotecan and prolonged survival of animals in a disseminated model of acute myelogenous leukemia in combination with cytarabine. NMS-P937, with its favorable pharmacologic parameters, good oral bioavailability in rodent and nonrodent species, and proven antitumor activity in different preclinical models using a variety of dosing regimens, potentially provides a high degree of flexibility in dosing schedules and warrants investigation in clinical settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-11-0765DOI Listing
April 2012

Therapeutic efficacy of the pan-cdk inhibitor PHA-793887 in vitro and in vivo in engraftment and high-burden leukemia models.

Exp Hematol 2010 Apr 16;38(4):259-269.e2. Epub 2010 Feb 16.

Nerviano Medical Sciences Srl, Business Unit Oncology, Nerviano, Italy.

Objective: The aim of the work was to determine and characterize, in vitro and in vivo, the therapeutic activity of PHA-793887, a new potent pan-cdk inhibitor, in the context of hematopoietic neoplasms.

Materials And Methods: Thirteen leukemic cell lines bearing different cytogenetic abnormalities and normal hematopoietic cells were used in cytotoxicity and colony assays. The drug activity at the molecular level was analyzed by Western blotting. PHA-793887 was also tested in vivo in several leukemia xenograft models.

Results: PHA-793887 was cytotoxic for leukemic cell lines in vitro, with IC(50) ranging from 0.3 to 7 microM (mean: 2.9 microM), regardless of any specific chromosomal aberration. At these doses, the drug was not cytotoxic for normal unstimulated peripheral blood mononuclear cells or CD34(+) hematopoietic stem cells. Interestingly, in colony assays PHA-793887 showed very high activity against leukemia cell lines, with an IC(50) <0.1 microM (mean: 0.08 microM), indicating that it has efficient and prolonged antiproliferative activity. PHA-793887 induced cell-cycle arrest, inhibited Rb and nucleophosmin phosphorylation, and modulated cyclin E and cdc6 expression at low doses (0.2-1 microM) and induced apoptosis at the highest dose (5 microM). It was also effective in vivo in both subcutaneous xenograft and primary leukemic disseminated models that better mimic naturally occurring human disease. Interestingly, in one disseminated model derived from a relapsed Philadelphia-positive acute lymphoid leukemia patient, PHA-793887 showed strong therapeutic activity also when treatment was started after establishment of high disease burden.

Conclusions: We conclude that PHA-793887 has promising therapeutic activity against acute leukemias in vitro and in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exphem.2010.02.004DOI Listing
April 2010