Publications by authors named "Alessandra Cappellini"

37 Publications

Clinical and Molecular Insights in Erythropoiesis Regulation of Signal Transduction Pathways in Myelodysplastic Syndromes and β-Thalassemia.

Int J Mol Sci 2021 Jan 15;22(2). Epub 2021 Jan 15.

Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy.

Erythropoiesis regulation is essential in normal physiology and pathology, particularly in myelodysplastic syndromes (MDS) and β-thalassemia. Several signaling transduction processes, including those regulated by inositides, are implicated in erythropoiesis, and the latest MDS or β-thalassemia preclinical and clinical studies are now based on their regulation. Among others, the main pathways involved are those regulated by transforming growth factor (TGF)-β, which negatively regulates erythrocyte differentiation and maturation, and erythropoietin (EPO), which acts on the early-stage erythropoiesis. Also small mother against decapentaplegic (SMAD) signaling molecules play a role in pathology, and activin receptor ligand traps are being investigated for future clinical applications. Even inositide-dependent signaling, which is important in the regulation of cell proliferation and differentiation, is specifically associated with erythropoiesis, with phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K) as key players that are becoming increasingly important as new promising therapeutic targets. Additionally, Roxadustat, a new erythropoiesis stimulating agent targeting hypoxia inducible factor (HIF), is under clinical development. Here, we review the role and function of the above-mentioned signaling pathways, and we describe the state of the art and new perspectives of erythropoiesis regulation in MDS and β-thalassemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22020827DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830211PMC
January 2021

Cell signaling pathways in autosomal-dominant leukodystrophy (ADLD): the intriguing role of the astrocytes.

Cell Mol Life Sci 2021 Mar 9;78(6):2781-2795. Epub 2020 Oct 9.

Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.

Autosomal-dominant leukodystrophy (ADLD) is a rare fatal neurodegenerative disorder with overexpression of the nuclear lamina component, Lamin B1 due to LMNB1 gene duplication or deletions upstream of the gene. The molecular mechanisms responsible for driving the onset and development of this pathology are not clear yet. Vacuolar demyelination seems to be one of the most significant histopathological observations of ADLD. Considering the role of oligodendrocytes, astrocytes, and leukemia inhibitory factor (LIF)-activated signaling pathways in the myelination processes, this work aims to analyze the specific alterations in different cell populations from patients with LMNB1 duplications and engineered cellular models overexpressing Lamin B1 protein. Our results point out, for the first time, that astrocytes may be pivotal in the evolution of the disease. Indeed, cells from ADLD patients and astrocytes overexpressing LMNB1 show severe ultrastructural nuclear alterations, not present in oligodendrocytes overexpressing LMNB1. Moreover, the accumulation of Lamin B1 in astrocytes induces a reduction in LIF and in LIF-Receptor (LIF-R) levels with a consequential decrease in LIF secretion. Therefore, in both our cellular models, Jak/Stat3 and PI3K/Akt axes, downstream of LIF/LIF-R, are downregulated. Significantly, the administration of exogenous LIF can partially reverse the toxic effects induced by Lamin B1 accumulation with differences between astrocytes and oligodendrocytes, highlighting that LMNB1 overexpression drastically affects astrocytic function reducing their fundamental support to oligodendrocytes in the myelination process. In addition, inflammation has also been investigated, showing an increased activation in ADLD patients' cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00018-020-03661-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004488PMC
March 2021

Phospholipase C beta1 (PI-PLCbeta1)/Cyclin D3/protein kinase C (PKC) alpha signaling modulation during iron-induced oxidative stress in myelodysplastic syndromes (MDS).

FASEB J 2020 11 22;34(11):15400-15416. Epub 2020 Sep 22.

Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

MDS are characterized by anemia and transfusion requirements. Transfused patients frequently show iron overload that negatively affects hematopoiesis. Iron chelation therapy can be effective in these MDS cases, but the molecular consequences of this treatment need to be further investigated. That is why we studied the molecular features of iron effect and Deferasirox therapy on PI-PLCbeta1 inositide signaling, using hematopoietic cells and MDS samples. At baseline, MDS patients showing a positive response after iron chelation therapy displayed higher levels of PI-PLCbeta1/Cyclin D3/PKCalpha expression. During treatment, these responder patients, as well as hematopoietic cells treated with FeCl and Deferasirox, showed a specific reduction of PI-PLCbeta1/Cyclin D3/PKCalpha expression, indicating that this signaling pathway is targeted by Deferasirox. The treatment was also able to specifically decrease the production of ROS. This effect correlated with a reduction of IL-1A and IL-2, as well as Akt/mTOR phosphorylation. In contrast, cells exposed only to FeCl and cells from MDS patients refractory to Deferasirox showed a specific increase of ROS and PI-PLCbeta1/Cyclin D3/PKCalpha expression. All in all, our data show that PI-PLCbeta1 signaling is a target for iron-induced oxidative stress and suggest that baseline PI-PLCbeta1 quantification could predict iron chelation therapy response in MDS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.202000933RRDOI Listing
November 2020

Lamin A and Prelamin A Counteract Migration of Osteosarcoma Cells.

Cells 2020 03 22;9(3). Epub 2020 Mar 22.

CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, 40136 Bologna, Italy.

A type lamins are fundamental components of the nuclear lamina. Changes in lamin A expression correlate with malignant transformation in several cancers. However, the role of lamin A has not been explored in osteosarcoma (OS). Here, we wanted to investigate the role of lamin A in normal osteoblasts (OBs) and OS cells. Thus, we studied the expression of lamin A/C in OS cells compared to OBs and evaluated the effects of lamin A overexpression in OS cell lines. We show that, while lamin A expression increases during osteoblast differentiation, all examined OS cell lines express lower lamin A levels relative to differentiated OBs. The condition of low expression confers to OS cells a significant increase in migration potential, while overexpression of lamin A reduces migration ability of OS cells. Moreover, overexpression of unprocessable prelamin A also reduces cell migration. In agreement with the latter finding, OS cells which accumulate the highest prelamin A levels upon inhibition of lamin A maturation by statins, had significantly reduced migration ability. Importantly, OS cells subjected to statin treatment underwent apoptotic cell death in a RAS-independent, lamin A-dependent manner. Our results show that pro-apoptotic effects of statins and statin inhibitory effect on OS cell migration are comparable to those obtained by prelamin A accumulation and further suggest that modulation of lamin A expression and post-translational processing can be a tool to decrease migration potential in OS cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells9030774DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140691PMC
March 2020

Nuclear Inositides and Inositide-Dependent Signaling Pathways in Myelodysplastic Syndromes.

Cells 2020 03 12;9(3). Epub 2020 Mar 12.

Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy.

Myelodysplastic syndromes (MDS) are a heterogeneous group of hematological malignancies characterized by peripheral blood cytopenia and abnormal myeloproliferation, as well as a variable risk of evolution into acute myeloid leukemia (AML). The nucleus is a highly organized organelle with several distinct domains where nuclear inositides localize to mediate essential cellular events. Nuclear inositides play a critical role in the modulation of erythropoiesis or myelopoiesis. Here, we briefly review the nuclear structure, the localization of inositides and their metabolic enzymes in subnuclear compartments, and the molecular aspects of nuclear inositides in MDS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells9030697DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140618PMC
March 2020

Targeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-cell acute lymphoblastic leukemia.

J Cell Physiol 2020 06 6;235(6):5413-5428. Epub 2020 Jan 6.

CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy.

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological disorder that results from the clonal transformation of T-cell precursors. Phosphatidylinositol 3-kinase (PI3K)/Akt/mechanistic target of rapamycin (mTOR) and canonical Wnt/β-catenin signaling pathways play a crucial role in T-cell development and in self-renewal of healthy and leukemic stem cells. Notably, β-catenin is a transcriptional regulator of several genes involved in cancer cell proliferation and survival. In this way, aberrations of components belonging to the aforementioned networks contribute to T-ALL pathogenesis. For this reason, inhibition of both pathways could represent an innovative strategy in this hematological malignancy. Here, we show that combined targeting of Wnt/β-catenin pathway through ICG-001, a CBP/β-catenin transcription inhibitor, and of the PI3K/Akt/mTOR axis through ZSTK-474, a PI3K inhibitor, downregulated proliferation, survival, and clonogenic activity of T-ALL cells. ICG-001 and ZSTK-474 displayed cytotoxic effects, and, when combined together, induced a significant increase in apoptotic cells. This induction of apoptosis was associated with the downregulation of Wnt/β-catenin and PI3K/Akt/mTOR pathways. All these findings were confirmed under hypoxic conditions that mimic the bone marrow niche where leukemic stem cells are believed to reside. Taken together, our findings highlight potentially promising treatment consisting of cotargeting Wnt/β-catenin and PI3K/Akt/mTOR pathways in T-ALL settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.29429DOI Listing
June 2020

Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device.

PLoS One 2018 29;13(6):e0199312. Epub 2018 Jun 29.

University of Bologna, Department of Physics and Astronomy, Bologna, Italy.

Radiation therapy is a useful and standard tumor treatment strategy. Despite recent advances in delivery of ionizing radiation, survival rates for some cancer patients are still low because of recurrence and radioresistance. This is why many novel approaches have been explored to improve radiotherapy outcome. Some strategies are focused on enhancement of accuracy in ionizing radiation delivery and on the generation of greater radiation beams, for example with a higher dose rate. In the present study we proposed an in vitro research of the biological effects of very high dose rate beam on SK-Mel28 and A375, two radioresistant human melanoma cell lines. The beam was delivered by a pulsed plasma device, a "Mather type" Plasma Focus for medical applications. We hypothesized that this pulsed X-rays generator is significantly more effective to impair melanoma cells survival compared to conventional X-ray tube. Very high dose rate treatments were able to reduce clonogenic efficiency of SK-Mel28 and A375 more than the X-ray tube and to induce a greater, less easy-to-repair DNA double-strand breaks. Very little is known about biological consequences of such dose rate. Our characterization is preliminary but is the first step toward future clinical considerations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199312PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025851PMC
April 2019

Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).

FASEB J 2018 02 4;32(2):681-692. Epub 2018 Jan 4.

Cellular Signalling Laboratory, Institute of Human Anatomy, Dipartimento di Scienze Biomediche e NeuroMotorie, University of Bologna, Bologna, Italy.

PI-PLCβ1 is involved in cell proliferation, differentiation, and myelodysplastic syndrome (MDS) pathogenesis. Moreover, the increased activity of PI-PLCβ1 reduces the expression of PKC-α, which, in turn, delays the cell proliferation and is linked to erythropoiesis. Lenalidomide is currently used in low-risk patients with MDS and del(5q), where it can suppress the del(5q) clone and restore normal erythropoiesis. In this study, we analyzed the effect of lenalidomide on 16 patients with low-risk del(5q) MDS, as well as del(5q) and non-del(5q) hematopoietic cell lines, mainly focusing on erythropoiesis, cell cycle, and PI-PLCβ1/PKC-α signaling. Overall, 11 patients were evaluated clinically, and 10 (90%) had favorable responses; the remaining case had a stable disease. At a molecular level, both responder patients and del(5q) cells showed a specific induction of erythropoiesis, with a reduced γ/β-globin ratio, an increase in glycophorin A, and a nuclear translocation of PKC-α. Moreover, lenalidomide could induce a selective G/G arrest of the cell cycle in del(5q) cells, slowing down the rate proliferation in those cells. Altogether, our results could not only better explain the role of PI-PLCβ1/PKC-α signaling in erythropoiesis but also lead to a better comprehension of the lenalidomide effect on del(5q) MDS and pave the way to innovative, targeted therapies.-Poli, A., Ratti, S., Finelli, C., Mongiorgi, S., Clissa, C., Lonetti, A., Cappellini, A., Catozzi, A., Barraco, M., Suh, P.-G., Manzoli, L., McCubrey, J. A., Cocco, L., Follo, M. Y. Nuclear translocation of PKC-α is associated with cell cycle arrest and erythroid differentiation in myelodysplastic syndromes (MDSs).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201700690RDOI Listing
February 2018

Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia.

J Cell Physiol 2018 Mar 7;233(3):1796-1811. Epub 2017 Sep 7.

Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy.

Despite remarkable progress in polychemotherapy protocols, pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains fatal in around 20% of cases. Hence, novel targeted therapies are needed for patients with poor prognosis. Glucocorticoids (GCs) are drugs commonly administrated for B-ALL treatment. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway is frequently observed in B-ALL and contributes to GC-resistance. Here, we analyzed for the first time to our knowledge, the therapeutic potential of pan and isoform-selective PI3K p110 inhibitors, alone or combined with dexamethasone (DEX), in B-ALL leukemia cell lines and patient samples. We found that a pan PI3K p110 inhibitor displayed the most powerful cytotoxic effects in B-ALL cells, by inducing cell cycle arrest and apoptosis. Both a pan PI3K p110 inhibitor and a dual γ/δ PI3K p110 inhibitor sensitized B-ALL cells to DEX by restoring nuclear translocation of the GC receptor and counteracted stroma-induced DEX-resistance. Finally, gene expression analysis documented that, on one hand the combination consisting of a pan PI3K p110 inhibitor and DEX strengthened the DEX-induced up- or down-regulation of several genes involved in apoptosis, while on the other, it rescued the effects of genes that might be involved in GC-resistance. Overall, our findings strongly suggest that PI3K p110 inhibition could be a promising strategy for treating B-ALL patients by improving GC therapeutic effects and/or overcoming GC-resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26135DOI Listing
March 2018

Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway.

J Hematol Oncol 2016 10 24;9(1):114. Epub 2016 Oct 24.

Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy.

Background: Although in recent years, the introduction of novel chemotherapy protocols has improved the outcome of T cell acute lymphoblastic leukemia (T-ALL) patients, refractory and/or relapsing disease remains a foremost concern. In this context, a major contribution was provided by the introduction of the nucleoside analog nelarabine, approved for salvage treatment of T-ALL patients with refractory/relapsed disease. However, nelarabine could induce a life-threatening, dose-dependent neurotoxicity. To improve nelarabine efficacy, we have analyzed its molecular targets, testing selective inhibitors of such targets in combination with nelarabine.

Methods: The effectiveness of nelarabine as single agent or in combination with PI3K, Bcl2, and MEK inhibitors was evaluated on human T-ALL cell lines and primary T-ALL refractory/relapsed lymphoblasts. The efficacy of signal modulators in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed by flow cytometry, western blotting, and quantitative real-time PCR in T-ALL settings.

Results: Treatment with nelarabine as a single agent identified two groups of T-ALL cell lines, one sensitive and one resistant to the drug. Whereas sensitive T-ALL cells showed a significant increase of apoptosis and a strong down-modulation of PI3K signaling, resistant T-ALL cells showed a hyperactivation of AKT and MEK/ERK1/2 signaling pathways, not caused by differences in the expression of nelarabine transporters or metabolic activators. We then studied the combination of nelarabine with the PI3K inhibitors (both pan and dual γ/δ inhibitors), with the Bcl2 specific inhibitor ABT199, and with the MEK inhibitor trametinib on both T-ALL cell lines and patient samples at relapse, which displayed constitutive activation of PI3K signaling and resistance to nelarabine alone. The combination with the pan PI3K inhibitor ZSTK-474 was the most effective in inhibiting the growth of T-ALL cells and was synergistic in decreasing cell survival and inducing apoptosis in nelarabine-resistant T-ALL cells. The drug combination caused AKT dephosphorylation and a downregulation of Bcl2, while nelarabine alone induced an increase in p-AKT and Bcl2 signaling in the resistant T-ALL cells and relapsed patient samples.

Conclusions: These findings indicate that nelarabine in combination with PI3K inhibitors may be a promising therapeutic strategy for the treatment of T-ALL relapsed patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13045-016-0344-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075755PMC
October 2016

Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB.

Oncotarget 2016 Jan;7(2):1323-40

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX-4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomib-mediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.6361DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811463PMC
January 2016

Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting.

Biochim Biophys Acta 2016 Mar 1;1863(3):449-463. Epub 2015 Sep 1.

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy. Electronic address:

The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2015.08.015DOI Listing
March 2016

PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors.

Oncotarget 2015 Apr;6(12):10399-414

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496363PMC
http://dx.doi.org/10.18632/oncotarget.3295DOI Listing
April 2015

Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review).

Int J Oncol 2014 Sep 26;45(3):909-18. Epub 2014 Jun 26.

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2014.2525DOI Listing
September 2014

Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia.

Cell Cycle 2014 29;13(14):2237-47. Epub 2014 May 29.

Department of Biomedical and Neuromotor Sciences; University of Bologna; Bologna, Italy.

Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.29267DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111679PMC
December 2015

Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells.

Adv Biol Regul 2014 Sep 30;56:6-21. Epub 2014 Apr 30.

Institute of Molecular Genetics, National Research Council, via di Barbiano 1/10, 40136 Bologna, Italy; Musculoskeletal Cell Biology Laboratory, IOR, via di Barbiano 1/10, 40136 Bologna, Italy.

Leukemia initiating cells (LICs) represent a reservoir that is believed to drive relapse and resistance to chemotherapy in blood malignant disorders. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases and is prone to early relapse. Although the prognosis of T-ALL has improved especially in children due to the use of new intensified treatment protocols, the outcome of relapsed T-ALL cases is still poor. Putative LICs have been identified also in T-ALL. LICs are mostly quiescent and for this reason highly resistant to chemotherapy. Therefore, they evade treatment and give rise to disease relapse. At present great interest surrounds the development of targeted therapies against signaling networks aberrantly activated in LICs and important for their survival and drug-resistance. Both the Notch1 pathway and the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) network are involved in T-ALL LIC survival and drug-resistance and could be targeted by small molecules. Thus, Notch1 and PI3K/Akt/mTOR inhibitors are currently being developed for clinical use either as single agents or in combination with conventional chemotherapy for T-ALL patient treatment. In this review, we summarize the existing knowledge of the relevance of Notch1 and PI3K/Akt/mTOR signaling in T-ALL LICs and we examine the rationale for targeting these key signal transduction networks by means of selective pharmacological inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbior.2014.04.004DOI Listing
September 2014

A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia.

Oncotarget 2012 Dec;3(12):1615-28

Institute of Molecular Genetics, National Research Council, Bologna, Italy.

Signaling through the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream effectors, Akt and mechanistic target of rapamycin (mTOR), is aberrantly activated in acute myeloid leukemia (AML) patients, where it contributes to leukemic cell proliferation, survival, and drug-resistance. Thus, inhibiting mTOR signaling in AML blasts could enhance their sensitivity to cytotoxic agents. Preclinical data also suggest that allosteric mTOR inhibition with rapamycin impaired leukemia initiating cells (LICs) function. In this study, we assessed the therapeutic potential of a combination consisting of temsirolimus [an allosteric mTOR complex 1 (mTORC1) inhibitor] with clofarabine, a nucleoside analogue with potent inhibitory effects on both ribonucleotide reductase and DNA polymerase. The drug combination (CLO-TOR) displayed synergistic cytotoxic effects against a panel of AML cell lines and primary cells from AML patients. Treatment with CLO-TOR induced a G₀/G₁-phase cell cycle arrest, apoptosis, and autophagy. CLO-TOR was pro-apoptotic in an AML patient blast subset (CD34⁺/CD38⁻/CD123⁺), which is enriched in putative leukemia initiating cells (LICs). In summary, the CLO-TOR combination could represent a novel valuable treatment for AML patients, also in light of its efficacy against LICs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681499PMC
http://dx.doi.org/10.18632/oncotarget.762DOI Listing
December 2012

Targeting the liver kinase B1/AMP-activated protein kinase pathway as a therapeutic strategy for hematological malignancies.

Expert Opin Ther Targets 2012 Jul 12;16(7):729-42. Epub 2012 Jun 12.

University of Bologna, Human Anatomy, via Irnerio 48, Bologna, 40126, Italy.

Introduction: Despite considerable advances, several hematological malignancies remain incurable with standard treatments. Therefore, there is a need for novel targeted and less toxic therapies, particularly for patients who develop resistance to traditional chemotherapeutic drugs. The liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling pathway has recently emerged as a tumor suppressor axis. A critical point is that the LKB1/AMPK network remains functional in a wide range of cancers and could be stimulated by drugs, such as N,N-dimethylimidodicarbonimidic diamide (metformin) or 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR).

Areas Covered: The literature data show that drugs activating LKB1/AMPK signaling induced cell cycle arrest, caspase-dependent apoptosis or autophagy in hematopoietic tumors. Moreover, metformin effectively inhibited mammalian target of rapamycin complex 1 (mTORC1)-controlled oncogenetic protein translation, which does not occur with allosteric mTORC1 inhibitors, such as rapamycin and its derivatives. Metformin was also capable of targeting leukemic stem cells, the most relevant target for leukemia eradication.

Expert Opinion: Data emerging from preclinical settings suggest that the LKB1/AMPK pathway is critically involved in regulating proliferation and survival of malignant hematopoietic cells. Thus, it is proposed that drugs activating the LKB1/AMPK axis may offer a novel and less toxic treatment option for some types of hematological malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1517/14728222.2012.694869DOI Listing
July 2012

Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment.

Oncotarget 2012 Apr;3(4):371-94

Department of Human Anatomy, University of Bologna, Cellular Signalling Laboratory, Bologna, Italy.

Phosphatidylinositol 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) are two key components of the PI3K/Akt/mTOR signaling pathway. This signal transduction cascade regulates a wide range of physiological cell processes, that include differentiation, proliferation, apoptosis, autophagy, metabolism, motility, and exocytosis. However, constitutively active PI3K/Akt/mTOR signaling characterizes many types of tumors where it negatively influences response to therapeutic treatments. Hence, targeting PI3K/Akt/mTOR signaling with small molecule inhibitors may improve cancer patient outcome. The PI3K/Akt/mTOR signaling cascade is overactive in acute leukemias, where it correlates with enhanced drug-resistance and poor prognosis. The catalytic sites of PI3K and mTOR share a high degree of sequence homology. This feature has allowed the synthesis of ATP-competitive compounds targeting the catalytic site of both kinases. In preclinical models, dual PI3K/mTOR inhibitors displayed a much stronger cytotoxicity against acute leukemia cells than either PI3K inhibitors or allosteric mTOR inhibitors, such as rapamycin. At variance with rapamycin, dual PI3K/mTOR inhibitors targeted both mTOR complex 1 and mTOR complex 2, and inhibited the rapamycin-resistant phosphorylation of eukaryotic initiation factor 4E-binding protein 1, resulting in a marked inhibition of oncogenic protein translation. Therefore, they strongly reduced cell proliferation and induced an important apoptotic response. Here, we reviewed the evidence documenting that dual PI3K/mTOR inhibitors may represent a promising option for future targeted therapies of acute leukemia patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3380573PMC
http://dx.doi.org/10.18632/oncotarget.477DOI Listing
April 2012

The emerging role of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling network in normal myelopoiesis and leukemogenesis.

Biochim Biophys Acta 2010 Sep 23;1803(9):991-1002. Epub 2010 Apr 23.

Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.

The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway mediates diverse and important physiological cell functions which include proliferation, differentiation, survival, motility, autophagy, and metabolism. However, dysregulated PI3K/Akt/mTOR signaling has been documented in a wide range of neoplasias, including malignant hematological disorders. It is now emerging that this signaling network plays a key role during normal hematopoiesis, a tightly regulated process resulting in the formation of all blood lineages. Blood cell development encompasses a complex series of events which are mainly regulated by actions of cytokines, a family of extracellular ligands which stimulate many biological responses in a wide array of cell types. Hematopoiesis is strictly dependent on the correct function of the bone marrow microenvironment (BMM), as BMM cells secrete most of the cytokines. Several of these cytokines activate the PI3K/Akt/mTOR signaling network and regulate proliferation, survival, and differentiation events during hematopoiesis. Here, we review the evidence that links the signals emanating from the PI3K/Akt/mTOR cascade with the functions of hematopoietic stem cells and the process of myelopoiesis, including lineage commitment. We then highlight the emerging role played by aberrant PI3K/Akt/mTOR signaling during leukemogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamcr.2010.04.005DOI Listing
September 2010

The cyclin-dependent kinase inhibitor roscovitine and the nucleoside analog sangivamycin induce apoptosis in caspase-3 deficient breast cancer cells independent of caspase mediated P-glycoprotein cleavage: implications for therapy of drug resistant breast cancers.

Cell Cycle 2009 May 2;8(9):1421-5. Epub 2009 May 2.

Dipartimento di Scienze Motorie e della Salute, Università di Cassino, Cassino, Italy.

Resistance to multiple chemotherapeutic agents is a common clinical problem which can arise during cancer treatment. Drug resistance often involves overexpression of the multidrug resistance MDR1 gene, encoding P-glycoprotein (P-gp), a 170-kDa glycoprotein belonging to the ATP-binding cassette superfamily of membrane transporters. We have recently demonstrated apoptosis-induced, caspase-3-dependent P-gp cleavage in human T-lymphoblastoid CEM-R VBL100 cells. However, P-gp contain many aspartate residues which could be targeted by caspases other than caspase-3. To test whether other caspases could cleave P-gp in vivo, we investigated the fate of P-gp during roscovitine- and sangivamycin- induced apoptosis in MCF7 human breast cancer cells, as they lack functional caspase-3. MCF7 cells were stably transfected with human cDNA encoding P-gp. P-gp was cleaved in vitro by purified recombinant caspase-3, -6 and -7. However, P-gp cleavage was not detected in vivo in MCF7 cells induced to undergoing apoptosis by either roscovitine or sangivamycin, despite activation of both caspase-6 and -7. Interestingly, P-gp overexpressing MCF7 cells were more sensitive to either roscovitine or sangivamycin than wild-type cells, suggesting a novel potential therapeutic strategy against P-gp overexpressing cells. Taken together, our results support the concept that caspase-3 is the only caspase responsible for in vivo cleavage of P-gp and also highlight small molecules which could be effective in treating P-gp overexpressing cancers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813519PMC
http://dx.doi.org/10.4161/cc.8.9.8323DOI Listing
May 2009

Radiobiologic response of medulloblastoma cell lines: involvement of beta-catenin?

J Neurooncol 2008 Dec 8;90(3):243-51. Epub 2008 Aug 8.

Dipartimento Clinico Scienze Radiologiche e Istocitopatologiche, "Alma Mater" Università di Bologna, Bologna, Italy.

Medulloblastoma (MB) is the most common brain malignancy in children. Whole neural axis irradiation is the treatment of choice, but it often results in long-term neurocognitive and developmental impairment. Only insights into MB biology will lead to improved therapeutic outcome. Wingless (WNT) signalling deregulation occurs in up to 25% of sporadic tumors, but the specific role of nuclear beta-catenin and its involvement in the radioresponse remains unsettled. Therefore we studied the gamma-radiation response of two MB cell lines from cellular and molecular points of view. Our data show that the p53 wild-type cell line is more sensitive to ionizing radiations (IR) than the p53 mutated line, but apoptosis is also induced in p53-mutated cells, suggesting an alternative p53-independent mechanism. In addition, this study is the first to demonstrate that gamma-rays trigger the WNT system in our in vitro models. Further studies are required to test if this could explain the radiosensitivity of MB and the favorable prognostic value of nuclear beta-catenin in this tumor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-008-9659-5DOI Listing
December 2008

Proapoptotic activity and chemosensitizing effect of the novel Akt inhibitor (2S)-1-(1H-Indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) in T-cell acute lymphoblastic leukemia.

Mol Pharmacol 2008 Sep 24;74(3):884-95. Epub 2008 Jun 24.

Department of Human Anatomical Sciences, University of Bologna, 40126 Bologna, Italy.

Constitutively activated AKT kinase is a common feature of T-cell acute lymphoblastic leukemia (T-ALL). Here, we report that the novel AKT inhibitor (2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan2-amine (A443654) leads to rapid cell death of T-ALL lines and patient samples. Treatment of CEM, Jurkat, and MOLT-4 cells with nanomolar doses of the inhibitor led to AKT phosphorylation accompanied by dephosphorylation and activation of the downstream target, glycogen synthase kinase-3beta. Effects were time- and dose-dependent, resulting in apoptotic cell death. Treatment of Jurkat cells with A443654 resulted in activation of caspase-2, -3, -6, -8, and -9. Apoptotic cell death was mostly dependent on caspase-2 activation, as demonstrated by preincubation with a selective pharmacological inhibitor. It is remarkable that A443654 was highly effective against the drug-resistant cell line CEM-VBL100, which expresses 170-kDa P-glycoprotein. Moreover, A443654 synergized with the DNA-damaging agent etoposide in both drug-sensitive and drug-resistant cell lines when coadministered [combination index (CI) = 0.39] or when pretreated with etoposide followed by A443654 (CI = 0.689). The efficacy of A443654 was confirmed using blasts from six patients with T-ALL, all of whom displayed low levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and constitutive phosphorylation of Akt on Ser473. At 1 microM, the inhibitor was able to induce apoptotic cell death of T-ALL blast cells, as indicated by flow cytometric analysis of samples immunostained for active (cleaved) caspase-3. Because activated AKT is seen in a large percentage of patients with T-ALL, A443654, either alone or in combination with existing drugs, may be a useful therapy for primary and drug-resistant T-ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.108.047639DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659779PMC
September 2008

The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation.

Cancer Res 2007 May;67(9):4287-94

Cell Signaling Laboratory, Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Sezione di Anatomia and Istituto di Ematologia ed Oncologia Medica "L. e A. Seràgnoli," Università di Bologna, Bologna, Italy.

The Akt/mammalian target of rapamycin (mTOR) signaling pathway is important for both cell growth and survival. In particular, an impaired regulation of the Akt/mTOR axis has been strongly implicated in mechanisms related to neoplastic transformation, through enhancement of cell proliferation and survival. Myelodysplastic syndromes (MDS) are a group of heterogeneous hematopoietic stem cell disorders characterized by ineffective hematopoiesis and by a high risk of evolution into acute myelogenous leukemia (AML). The pathogenesis of the MDS evolution into AML is still unclear, although some recent studies indicate that aberrant activation of survival signaling pathways could be involved. In this investigation, done by means of immunofluorescent staining, we report an activation of the Akt/mTOR pathway in high-risk MDS patients. Interestingly, not only mTOR was activated but also its downstream targets, 4E-binding protein 1 and p70 ribosomal S6 kinase. Treatment with the selective mTOR inhibitor, rapamycin, significantly increased apoptotic cell death of CD33(+) (but not CD33(-)) cells from high-risk MDS patients. Rapamycin was ineffective in cells from healthy donors or low-risk MDS. Moreover, incubation of high-risk MDS patient CD34(+) cells with rapamycin decreased the in vitro clonogenic capability of these cells. In contrast, the phosphoinositide 3-kinase inhibitor, LY294002, did not significantly affect the clonogenic activity of high-risk MDS cells. Taken together, our results indicate that the Akt/mTOR pathway is critical for cell survival and proliferation in high-risk MDS patients. Therefore, this signaling network could become an interesting therapeutic target for treating more advanced MDS cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-4409DOI Listing
May 2007

Synergistic induction of apoptosis in human leukemia T cells by the Akt inhibitor perifosine and etoposide through activation of intrinsic and Fas-mediated extrinsic cell death pathways.

Mol Cancer Ther 2006 Jun;5(6):1559-70

Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Università di Bologna, via Irnerio 48, 40126 Bologna, Italy.

Perifosine is an Akt inhibitor displaying strong antineoplastic effects in human tumor cell lines and is currently being tested in phase II clinical trials for treatment of major human cancers. Several recent studies showed the apoptotic effect of perifosine alone or in combination with other anticancer agents. However, this is the first study describing the effects of combining perifosine with the commonly used chemotherapy drug etoposide in cultured human Jurkat T-leukemia cells. Low concentrations of perifosine (5 micromol/L) induced cell death in a synergistic fashion with etoposide if used simultaneously or immediately following exposure to etoposide (posttreatment). The increase in cell death seems to be due to an inactivation of the Akt survival pathway, where treated cells showed a complete dephosphorylation of Akt. Moreover, combined drug-induced Akt deactivation was associated with a parallel decrease in phosphorylation of FoxO1 transcription factor and in expression of antiapoptotic Bcl-xL. Furthermore, the increase in cell death was associated with a specific activation of the caspase-dependent Fas death receptor pathway. These findings might be useful when designing clinical trials where chemotherapy is combined with perifosine for a potential broad use against hematologic malignancies in which the Akt survival pathway is frequently activated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-06-0076DOI Listing
June 2006

Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells.

J Cell Physiol 2006 Jun;207(3):836-44

Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Cell Signalling Laboratory, Università di Bologna, via Irnerio 48, Bologna, Italy.

Multidrug resistance (MDR) mediated by the drug efflux protein, 170-kDa P-glycoprotein (P-gp), is one mechanism that tumor cells use to escape cell death induced by chemotherapeutic drugs. Moreover, evidence suggests that cell lines expressing high levels of 170-kDa P-gp are less sensitive to caspase-mediated apoptosis induced by a wide range of death stimuli, including Fas ligand, tumor necrosis factor, and ultraviolet irradiation. However, the fate of 170-kDa P-gp during apoptosis is unknown. In this study, we demonstrate for the first time that 170-kDa P-gp is cleaved during apoptosis of VBL100 human T-lymphoblastoid CEM cells. Apoptotic cell death was induced by LY294002 (a pharmacological inhibitor of the phosphoinositide 3-kinase/Akt survival pathway), H2O2, and Z-LEHD-FMK (a caspase-9 inhibitor which has been recently reported to induce apoptosis in CEM cells). Using an antibody to a common epitope present in both the third and the sixth extracellular loop of P-gp, two cleavage products were detected, with an apparent molecular weight of 80 and 85 kDa. DEVD-FMK (a caspase-3 inhibitor), but not VEID-CHO (a caspase-6 inhibitor), blocked 170-kDa P-gp cleavage. Recombinant caspase-3 was able to cleave in vitro 170-kDa P-gp yielding two fragments of equal size to those generated in vivo. Considering the size of the cleaved fragments and their reactivity with antibodies, which recognize either the N-half or the C-half region of the protein, it is conceivable that the cleavage occurs intracytoplasmically. Since 170-kDa P-gp has been reported to counteract apoptosis, its cleavage may be a mechanism aimed at blocking an important cell survival component.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20628DOI Listing
June 2006

Application of flow cytometry to molecular medicine: detection of tumor necrosis factor-related apoptosis-inducing ligand receptors in acute myeloid leukaemia blasts.

Int J Mol Med 2005 Dec;16(6):1041-8

Dipartimento di Scienze Motorie e della Salute, Sezione di Anatomia, Università di Cassino, 03043 Cassino, Italy.

TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), a cytokine belonging to the TNF (tumor necrosis factor) family, is currently regarded as a potential anti-cancer agent. Nevertheless, several types of cancer cells display a low sensitivity to TRAIL or are completely resistant to this pro-apoptotic cytokine. TRAIL signalling is dependent on four receptors. Two of them, death receptors 4 and 5 (DR4 and DR5), induce apoptosis, whereas decoy receptors 1 and 2 (DcR1 and DcR2) are unable to evoke cell death upon TRAIL binding. TRAIL resistance may be related to the expression of TRAIL decoy receptors. TRAIL has been proposed as a novel therapeutic agent for the treatment of haematological disorders, including acute myeloid leukaemia (AML). Surprisingly, however, very limited information is available concerning the expression of TRAIL receptors in AML blasts. Here, we have evaluated, using flow cytometry, TRAIL receptor surface expression and sensitivity to TRAIL-dependent apoptosis of AML blasts from 30 patients. We observed frequent expression of TRAIL DcR1 and DcR2, while expression of DR4 and DR5 was less frequent. Nevertheless, the expression of DR4 or DR5 in leukaemic cells was always matched by a similar expression of one of the decoy receptors. Leukaemic blasts were invariably resistant, even to a high concentration (1000 ng/ml) of TRAIL. We suggest that AML blasts are resistant to TRAIL apoptosis in vitro. Therefore, it is unlikely that TRAIL alone might be used in the future as an innovative pharmacological agent for the treatment of AML.
View Article and Find Full Text PDF

Download full-text PDF

Source
December 2005

Deguelin, A PI3K/AKT inhibitor, enhances chemosensitivity of leukaemia cells with an active PI3K/AKT pathway.

Br J Haematol 2005 Jun;129(5):677-86

Dipartimento di Morfologia Umana Normale, Università di Trieste, Trieste, Italy.

Activation of the phosphoinositide 3 kinase (PI3K)/Akt signalling pathway has been linked with resistance to chemotherapeutic drugs, and its downregulation, by means of PI3K inhibitors, lowers resistance to various types of therapy in tumour cell lines. Recently, it has been reported that deguelin, a naturally occurring rotenoid, is a powerful inhibitor of PI3K. We investigated whether or not deguelin could enhance the sensitivity to chemotherapeutic drugs of human U937 leukaemia cells and acute myeloid leukaemia (AML) blasts with an activated PI3K/Akt network. Deguelin (10 nmol/l) induced S phase arrest with interference of progression to G2/M, and at 100 nmol/l significantly increased apoptotic cell death of U937. At 10-100 nmol/l concentrations, deguelin downregulated Akt phosphorylation of leukaemia cells and markedly increased sensitivity of U937 cells to etoposide or cytarabine. A 10 nmol/l concentration of deguelin did not negatively affect the survival rate of human cord blood CD34+ cells, whereas it increased sensitivity of AML blasts to cytarabine. Deguelin was less toxic than wortmannin on erythropoietin- and stem cell factor-induced erythropoiesis from CD34+ progenitor cells. Overall, our results indicate that deguelin might be used in the future for increasing sensitivity to therapeutic treatments of leukaemia cells with an active PI3K/Akt signalling network.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2141.2005.05504.xDOI Listing
June 2005

Nuclear diacylglycerol kinase-theta is activated in response to nerve growth factor stimulation of PC12 cells.

Cell Signal 2004 Nov;16(11):1263-71

Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Cell Signalling Laboratory, Università degli Studi di Bologna, via Irnerio 48, 40126, Italy.

Previous evidence from independent laboratories has shown that the nucleus contains diacylglycerol kinase (DGK) isoforms, i.e., the enzymes, which yield phosphatidic acid from diacylglycerol, thus terminating protein kinase C-mediated signaling events. A DGK isoform, which resides in the nucleus of PC12 cells, is DGK-theta. Here, we show that nerve growth factor (NGF) treatment of serum-starved PC12 cells results in the stimulation of both a cytoplasmic and a nuclear DGK activity. However, time course analysis shows that cytoplasmic DGK activity peaked earlier than its nuclear counterpart. While nuclear DGK activity was dramatically down-regulated by a monoclonal antibody known for selectively inhibiting DGK-theta, cytoplasmic DGK activity was not. Moreover, nuclear DGK activity was stimulated by phosphatidylserine, an anionic phospholipid that had no effect on cytoplasmic DGK activity. Upon NGF stimulation, the amount and the activity of DGK-theta, which was bound to the insoluble nuclear matrix fraction, substantially increased. Epidermal growth factor up-regulated a nuclear DGK activity insensitive to anti-DGK-theta monoclonal antibody. Overall, our findings identify nuclear DGK-theta as a down-stream target of NGF signaling in PC12 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2004.03.018DOI Listing
November 2004

Detection of serine 473 phosphorylated Akt in acute myeloid leukaemia blasts by flow cytometry.

Br J Haematol 2004 Sep;126(5):675-81

Servizio di Immunoematologia e Trasfusionale, Policlinico S. Orsola-Malpighi, via Irnerio 48, 40126 Bologna, Italy.

The phosphoinositide 3-kinase/Akt signalling pathway is a recently recognized important parameter in the prognosis and the response to treatment of acute myeloid leukaemia (AML). Akt kinase is activated by phosphorylation on Thr 308 and Ser 473. Active Akt promotes cell growth and survival to apoptotic insults. Thus, it seems important to evaluate Akt phosphorylation in AML blasts. This work aimed to establish whether it was possible to detect Akt phosphorylation on Ser 473 of AML blasts by means of flow cytometry. High levels of Akt activity and phosphorylation were detected in 13 of 15 cases of AML. Flow cytometric analysis revealed similar patterns of Ser 473 expression as was observed with Akt kinase activity and Western blot analysis of Thr 308 and Ser 473 phosphorylation. Double immunostaining enabled the simultaneous flow cytometric detection of an AML-associated antigen (CD33) and Ser 473 phosphorylated Akt in leukaemic blast populations. Our results indicate that flow cytometry enabled the rapid and quantitative assessment of Ser 473 phosphorylated Akt of AML blasts that, when used in combination with cell surface staining, can provide more accurate phenotyping of AML blasts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2141.2004.05121.xDOI Listing
September 2004