Publications by authors named "Aleksey Shatunov"

49 Publications

Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology.

Nat Genet 2021 12 6;53(12):1636-1648. Epub 2021 Dec 6.

Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00973-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648564PMC
December 2021

expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed.

Brain Commun 2021 7;3(4):fcab236. Epub 2021 Oct 7.

Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience King's College London, 5 Cutcombe Road, London SE5 9RT, UK.

Evidence indicates that common variants found in genome-wide association studies increase risk of disease through gene regulation via expression Quantitative Trait Loci. Using multiple genome-wide methods, we examined if Single Nucleotide Polymorphisms increase risk of Amyotrophic Lateral Sclerosis through expression Quantitative Trait Loci, and whether expression Quantitative Trait Loci expression is consistent across people who had Amyotrophic Lateral Sclerosis and those who did not. In combining public expression Quantitative Trait Loci data with Amyotrophic Lateral Sclerosis genome-wide association studies, we used Summary-data-based Mendelian Randomization to confirm that was the only gene that was genome-wide significant in mediating Amyotrophic Lateral Sclerosis risk via expression Quantitative Trait Loci (Summary-data-based Mendelian Randomization beta = 0.20, standard error = 0.04, -value = 4.29 × 10). Using motor cortex, we tested whether expression Quantitative Trait Loci showed significant differences in expression between Amyotrophic Lateral Sclerosis ( = 76) and controls ( = 25), genome-wide. Of 20 757 genes analysed, the two most significant expression Quantitative Trait Loci to show differential in expression between Amyotrophic Lateral Sclerosis and controls involve two known Amyotrophic Lateral Sclerosis genes ( and ). -acting expression Quantitative Trait Loci downstream of the gene showed significant differences in expression between Amyotrophic Lateral Sclerosis and controls (top expression Quantitative Trait Loci beta = 0.34, standard error = 0.063, -value = 4.54 × 10). These expression Quantitative Trait Loci also significantly modified Amyotrophic Lateral Sclerosis survival (number of samples = 4265, hazard ratio = 1.11, 95% confidence interval = 1.05-1.17, -value = 2.06 × 10) and act as an Amyotrophic Lateral Sclerosis trans-expression Quantitative Trait Loci hotspot for a wider network of genes enriched for function and Amyotrophic Lateral Sclerosis pathways. Using gene-set analyses, we found the genes that correlate with this trans-expression Quantitative Trait Loci hotspot significantly increase risk of Amyotrophic Lateral Sclerosis (beta = 0.247, standard deviation = 0.017, = 0.001) and schizophrenia (beta = 0.263, standard deviation = 0.008, -value = 1.18 × 10), a disease that genetically correlates with Amyotrophic Lateral Sclerosis. In summary, expression Quantitative Trait Loci are a major factor in Amyotrophic Lateral Sclerosis, not only influencing disease risk but are differentially expressed in Amyotrophic Lateral Sclerosis. expression Quantitative Trait Loci show distinct expression profiles in Amyotrophic Lateral Sclerosis that correlate with a wider network of genes that also confer risk of the disease and modify the disease's duration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/braincomms/fcab236DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545614PMC
October 2021

Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation.

Nat Genet 2021 09 6;53(9):1311-1321. Epub 2021 Sep 6.

Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.

Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00923-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612069PMC
September 2021

Association of Variants in the SPTLC1 Gene With Juvenile Amyotrophic Lateral Sclerosis.

JAMA Neurol 2021 10;78(10):1236-1248

Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.

Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.

Objective: To identify the genetic variants associated with juvenile ALS.

Design, Setting, And Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation. The patients and their family members were enrolled at academic hospitals and a government research facility between March 1, 2016, and March 13, 2020, and were observed until October 1, 2020. Whole-exome sequencing was also performed in a series of patients with juvenile ALS. A total of 66 patients with juvenile ALS and 6258 adult patients with ALS participated in the study. Patients were selected for the study based on their diagnosis, and all eligible participants were enrolled in the study. None of the participants had a family history of neurological disorders, suggesting de novo variants as the underlying genetic mechanism.

Main Outcomes And Measures: De novo variants present only in the index case and not in unaffected family members.

Results: Trio whole-exome sequencing was performed in 3 patients diagnosed with juvenile ALS and their parents. An additional 63 patients with juvenile ALS and 6258 adult patients with ALS were subsequently screened for variants in the SPTLC1 gene. De novo variants in SPTLC1 (p.Ala20Ser in 2 patients and p.Ser331Tyr in 1 patient) were identified in 3 unrelated patients diagnosed with juvenile ALS and failure to thrive. A fourth variant (p.Leu39del) was identified in a patient with juvenile ALS where parental DNA was unavailable. Variants in this gene have been previously shown to be associated with autosomal-dominant hereditary sensory autonomic neuropathy, type 1A, by disrupting an essential enzyme complex in the sphingolipid synthesis pathway.

Conclusions And Relevance: These data broaden the phenotype associated with SPTLC1 and suggest that patients presenting with juvenile ALS should be screened for variants in this gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaneurol.2021.2598DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8406220PMC
October 2021

A HML6 endogenous retrovirus on chromosome 3 is upregulated in amyotrophic lateral sclerosis motor cortex.

Sci Rep 2021 07 12;11(1):14283. Epub 2021 Jul 12.

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK.

There is increasing evidence that endogenous retroviruses (ERVs) play a significant role in central nervous system diseases, including amyotrophic lateral sclerosis (ALS). Studies of ALS have consistently identified retroviral enzyme reverse transcriptase activity in patients. Evidence indicates that ERVs are the cause of reverse transcriptase activity in ALS, but it is currently unclear whether this is due to a specific ERV locus or a family of ERVs. We employed a combination of bioinformatic methods to identify whether specific ERVs or ERV families are associated with ALS. Using the largest post-mortem RNA-sequence datasets available we selectively identified ERVs that closely resembled full-length proviruses. In the discovery dataset there was one ERV locus (HML6_3p21.31c) that showed significant increased expression in post-mortem motor cortex tissue after multiple-testing correction. Using six replication post-mortem datasets we found HML6_3p21.31c was consistently upregulated in ALS in motor cortex and cerebellum tissue. In addition, HML6_3p21.31c showed significant co-expression with cytokine binding and genes involved in EBV, HTLV-1 and HIV type-1 infections. There were no significant differences in ERV family expression between ALS and controls. Our results support the hypothesis that specific ERV loci are involved in ALS pathology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-93742-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8275748PMC
July 2021

Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders.

Genome Biol 2021 03 26;22(1):90. Epub 2021 Mar 26.

Centre for Clinical Research, The University of Queensland, Brisbane, QLD, 4019, Australia.

Background: People with neurodegenerative disorders show diverse clinical syndromes, genetic heterogeneity, and distinct brain pathological changes, but studies report overlap between these features. DNA methylation (DNAm) provides a way to explore this overlap and heterogeneity as it is determined by the combined effects of genetic variation and the environment. In this study, we aim to identify shared blood DNAm differences between controls and people with Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease.

Results: We use a mixed-linear model method (MOMENT) that accounts for the effect of (un)known confounders, to test for the association of each DNAm site with each disorder. While only three probes are found to be genome-wide significant in each MOMENT association analysis of amyotrophic lateral sclerosis and Parkinson's disease (and none with Alzheimer's disease), a fixed-effects meta-analysis of the three disorders results in 12 genome-wide significant differentially methylated positions. Predicted immune cell-type proportions are disrupted across all neurodegenerative disorders. Protein inflammatory markers are correlated with profile sum-scores derived from disease-associated immune cell-type proportions in a healthy aging cohort. In contrast, they are not correlated with MOMENT DNAm-derived profile sum-scores, calculated using effect sizes of the 12 differentially methylated positions as weights.

Conclusions: We identify shared differentially methylated positions in whole blood between neurodegenerative disorders that point to shared pathogenic mechanisms. These shared differentially methylated positions may reflect causes or consequences of disease, but they are unlikely to reflect cell-type proportion differences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-021-02275-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004462PMC
March 2021

Cross-reactive probes on Illumina DNA methylation arrays: a large study on ALS shows that a cautionary approach is warranted in interpreting epigenome-wide association studies.

NAR Genom Bioinform 2020 Dec 17;2(4):lqaa105. Epub 2020 Dec 17.

Department of Neurology, UMC Utrecht Brain Center, 3584 CG, Utrecht, the Netherlands.

Illumina DNA methylation arrays are a widely used tool for performing genome-wide DNA methylation analyses. However, measurements obtained from these arrays may be affected by technical artefacts that result in spurious associations if left unchecked. Cross-reactivity represents one of the major challenges, meaning that probes may map to multiple regions in the genome. Although several studies have reported on this issue, few studies have empirically examined the impact of cross-reactivity in an epigenome-wide association study (EWAS). In this paper, we report on cross-reactivity issues that we discovered in a large EWAS on the presence of the repeat expansion in ALS patients. Specifically, we found that that the majority of the significant probes inadvertently cross-hybridized to the locus. Importantly, these probes were not flagged as cross-reactive in previous studies, leading to novel insights into the extent to which cross-reactivity can impact EWAS. Our findings are particularly relevant for epigenetic studies into diseases associated with repeat expansions and other types of structural variation. More generally however, considering that most spurious associations were not excluded based on pre-defined sets of cross-reactive probes, we believe that the presented data-driven flag and consider approach is relevant for any type of EWAS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/nargab/lqaa105DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745769PMC
December 2020

The genetic architecture of ALS.

Neurobiol Dis 2021 01 29;147:105156. Epub 2020 Oct 29.

Department of Basic & Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9RX, UK; Department of Neurology, King's College Hospital, London SE5 9RS, UK. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2020.105156DOI Listing
January 2021

Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics.

Cell Rep 2020 10;33(4):108323

Centre for Clinical Research, The University of Queensland, Brisbane QLD, Australia; Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane QLD, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane QLD, Australia.

We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients' fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: -2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: -1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.108323DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610013PMC
October 2020

Relationship between smoking and ALS: Mendelian randomisation interrogation of causality.

J Neurol Neurosurg Psychiatry 2020 12 26;91(12):1312-1315. Epub 2020 Aug 26.

Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, King's College London, London, UK

Objective: Smoking has been widely studied as a susceptibility factor for amyotrophic lateral sclerosis (ALS), but results are conflicting and at risk of confounding bias. We used the results of recently published large genome-wide association studies and Mendelian randomisation methods to reduce confounding to assess the relationship between smoking and ALS.

Methods: Two genome-wide association studies investigating lifetime smoking (n=463 003) and ever smoking (n=1 232 091) were identified and used to define instrumental variables for smoking. A genome-wide association study of ALS (20 806 cases; 59 804 controls) was used as the outcome for inverse variance weighted Mendelian randomisation, and four other Mendelian randomisation methods, to test whether smoking is causal for ALS. Analyses were bidirectional to assess reverse causality.

Results: There was no strong evidence for a causal or reverse causal relationship between smoking and ALS. The results of Mendelian randomisation using the inverse variance weighted method were: lifetime smoking OR 0.94 (95% CI 0.74 to 1.19), p value 0.59; ever smoking OR 1.10 (95% CI 1 to 1.23), p value 0.05.

Conclusions: Using multiple methods, large sample sizes and sensitivity analyses, we find no evidence with Mendelian randomisation techniques that smoking causes ALS. Other smoking phenotypes, such as current smoking, may be suitable for future Mendelian randomisation studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2020-323316DOI Listing
December 2020

Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein.

Nat Neurosci 2019 12 25;22(12):1966-1974. Epub 2019 Nov 25.

Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

To discover novel genes underlying amyotrophic lateral sclerosis (ALS), we aggregated exomes from 3,864 cases and 7,839 ancestry-matched controls. We observed a significant excess of rare protein-truncating variants among ALS cases, and these variants were concentrated in constrained genes. Through gene level analyses, we replicated known ALS genes including SOD1, NEK1 and FUS. We also observed multiple distinct protein-truncating variants in a highly constrained gene, DNAJC7. The signal in DNAJC7 exceeded genome-wide significance, and immunoblotting assays showed depletion of DNAJC7 protein in fibroblasts in a patient with ALS carrying the p.Arg156Ter variant. DNAJC7 encodes a member of the heat-shock protein family, HSP40, which, along with HSP70 proteins, facilitates protein homeostasis, including folding of newly synthesized polypeptides and clearance of degraded proteins. When these processes are not regulated, misfolding and accumulation of aberrant proteins can occur and lead to protein aggregation, which is a pathological hallmark of neurodegeneration. Our results highlight DNAJC7 as a novel gene for ALS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41593-019-0530-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6919277PMC
December 2019

C9orf72 intermediate expansions of 24-30 repeats are associated with ALS.

Acta Neuropathol Commun 2019 07 17;7(1):115. Epub 2019 Jul 17.

Department of Basic and Clinical Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.

The expansion of a hexanucleotide repeat GGGGCC in C9orf72 is the most common known cause of ALS accounting for ~ 40% familial cases and ~ 7% sporadic cases in the European population. In most people, the repeat length is 2, but in people with ALS, hundreds to thousands of repeats may be observed. A small proportion of people have an intermediate expansion, of the order of 20 to 30 repeats in size, and it remains unknown whether intermediate expansions confer risk of ALS in the same way that massive expansions do. We investigated the association of this intermediate repeat with ALS by performing a meta-analysis of four previously published studies and a new British/Alzheimer's Disease Neuroimaging Initiative dataset of 1295 cases and 613 controls. The final dataset comprised 5071 cases and 3747 controls. Our meta-analysis showed association between ALS and intermediate C9orf72 repeats of 24 to 30 repeats in size (random-effects model OR = 4.2, 95% CI = 1.23-14.35, p-value = 0.02). Furthermore, we showed a different frequency of the repeat between the northern and southern European populations (Fisher's exact test p-value = 5 × 10). Our findings provide evidence for the association between intermediate repeats and ALS (p-value = 2 × 10) with direct relevance for research and clinical practice by showing that an expansion of 24 or more repeats should be considered pathogenic.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40478-019-0724-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6637621PMC
July 2019

The lysosomal disease caused by mutant VPS33A.

Hum Mol Genet 2019 08;28(15):2514-2530

Department of Medicine, University of Cambridge, Cambridge, UK.

A rare lysosomal disease resembling a mucopolysaccharidosis with unusual systemic features, including renal disease and platelet dysfunction, caused by the defect in a conserved region of the VPS33A gene on human chromosome 12q24.31, occurs in Yakuts-a nomadic Turkic ethnic group of Southern Siberia. VPS33A is a core component of the class C core vacuole/endosome tethering (CORVET) and the homotypic fusion and protein sorting (HOPS) complexes, which have essential functions in the endocytic pathway. Here we show that cultured fibroblasts from patients with this disorder have morphological changes: vacuolation with disordered endosomal/lysosomal compartments and-common to sphingolipid diseases-abnormal endocytic trafficking of lactosylceramide. Urine glycosaminoglycan studies revealed a pathological excess of sialylated conjugates as well as dermatan and heparan sulphate. Lipidomic screening showed elevated β-D-galactosylsphingosine with unimpaired activity of cognate lysosomal hydrolases. The 3D crystal structure of human VPS33A predicts that replacement of arginine 498 by tryptophan will de-stabilize VPS33A folding. We observed that the missense mutation reduced the abundance of full-length VPS33A and other components of the HOPS and CORVET complexes. Treatment of HeLa cells stably expressing the mutant VPS33A with a proteasome inhibitor rescued the mutant protein from degradation. We propose that the disease is due to diminished intracellular abundance of intact VPS33A. Exposure of patient-derived fibroblasts to the clinically approved proteasome inhibitor, bortezomib, or inhibition of glucosylceramide synthesis with eliglustat, partially corrected the impaired lactosylceramide trafficking defect and immediately suggest therapeutic avenues to explore in this fatal orphan disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz077DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6644154PMC
August 2019

Genome-wide survey of copy number variants finds MAPT duplications in progressive supranuclear palsy.

Mov Disord 2019 07 6;34(7):1049-1059. Epub 2019 May 6.

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.

Background: Progressive supranuclear palsy is a neurodegenerative tauopathy manifesting clinically as a progressive akinetic-rigid syndrome. In this study, we sought to identify genetic variants influencing PSP susceptibility through a genome-wide association analysis of a cohort of well-characterized patients who had participated in the Neuroprotection and Natural History in Parkinson Plus Syndromes and Blood Brain Barrier in Parkinson Plus Syndromes studies.

Methods: We genotyped single-nucleotide polymorphisms in 283 PSP cases from the United Kingdom, Germany, and France and compared these with genotypes from 4472 controls. Copy number variants were identified from genotyping data.

Results: We observed associations on chromosome 17 within or close to the MAPT gene and explored the genetic architecture at this locus. We confirmed the previously reported association of rs1768208 in the MOBP gene (P = 3.29 × 10 ) and rs1411478 in STX6 (P = 3.45 × 10 ). The population-attributable risk from the MAPT, MOBP, and STX6 single-nucleotide polymorphisms was found to be 0.37, 0.26, and 0.08, respectively. In addition, we found 2 instances of copy number variants spanning the MAPT gene in patients with PSP. These copy number variants include tau but few other genes within the chromosome 17 haplotype region, providing additional support for the direct pathogenicity of MAPT in PSP.

Conclusions: Clinicians should also be aware of MAPT duplication as a possible genetic cause of PSP, especially in patients presenting with young age at onset. © 2019 International Parkinson and Movement Disorder Society.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mds.27702DOI Listing
July 2019

Telomere length is greater in ALS than in controls: a whole genome sequencing study.

Amyotroph Lateral Scler Frontotemporal Degener 2019 05 1;20(3-4):229-234. Epub 2019 Apr 1.

a Department of Basic and Clinical Neuroscience , King's College London, Maurice Wohl Clinical Neuroscience Institute , London , UK.

Amyotrophic lateral sclerosis is a neurodegenerative disease of motor neurons resulting in progressive paralysis and death, typically within 3-5 years. Although the heritability of ALS is about 60%, only about 11% is explained by common gene variants, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication and shorten naturally with age. Gender and age are risk factors for ALS and also associated with telomere length. We therefore investigated telomere length in ALS. We estimated telomere length by applying a bioinformatics analysis to whole genome sequence data of leukocyte-derived DNA from people with ALS and age and gender-matched matched controls in a UK population. We tested the association of telomere length with ALS and ALS survival. There were 1241 people with ALS and 335 controls. The median age for ALS was 62.5 years and for controls, 60.1 years, with a male-female ratio of 62:38. Accounting for age and sex, there was a 9% increase of telomere length in ALS compared to matched controls. Those with longer telomeres had a 16% increase in median survival. Of nine SNPs associated with telomere length, two were also associated with ALS: rs8105767 near the gene ( = 1.29 × 10) and rs6772228 ( = 0.001), which is in an intron for the gene. Longer telomeres in leukocyte-derived DNA are associated with ALS, and with increased survival in those with ALS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/21678421.2019.1586951DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567548PMC
May 2019

ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients.

Amyotroph Lateral Scler Frontotemporal Degener 2019 05 5;20(3-4):207-215. Epub 2019 Mar 5.

c UK Dementia Research Institute, King's College London , London , UK.

Amyotrophic lateral sclerosis (ALS, MND) is a neurodegenerative disease of upper and lower motor neurons resulting in death from neuromuscular respiratory failure, typically within two years of first symptoms. Genetic factors are an important cause of ALS, with variants in more than 25 genes having strong evidence, and weaker evidence available for variants in more than 120 genes. With the increasing availability of next-generation sequencing data, non-specialists, including health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyze and interpret it. Furthermore, the relevance of novel or existing variants in ALS genes is not always apparent. Here we present ALSgeneScanner, a tool that is easy to install and use, able to provide an automatic, detailed, annotated report, on a list of ALS genes from whole-genome sequencing (WGS) data in a few hours and whole exome sequence data in about 1 h on a readily available mid-range computer. This will be of value to non-specialists and aid in the interpretation of the relevance of novel and existing variants identified in DNA sequencing data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/21678421.2018.1562553DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567555PMC
May 2019

Younger age of onset in familial amyotrophic lateral sclerosis is a result of pathogenic gene variants, rather than ascertainment bias.

J Neurol Neurosurg Psychiatry 2019 03 30;90(3):268-271. Epub 2018 Sep 30.

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK

Objective: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease of motor neurons with a median survival of 2 years. Familial ALS has a younger age of onset than apparently sporadic ALS. We sought to determine whether this younger age of onset is a result of ascertainment bias or has a genetic basis.

Methods: Samples from people with ALS were sequenced for 13 ALS genes. To determine the effect of genetic variation, age of onset was compared in people with sporadic ALS carrying a pathogenic gene variant and those who do not; to determine the effect of family history, we compared those with genetic sporadic ALS and familial ALS.

Results: There were 941 people with a diagnosis of ALS, 100 with familial ALS. Of 841 with apparently sporadic ALS, 95 carried a pathogenic gene variant. The mean age of onset in familial ALS was 5.3 years younger than for apparently sporadic ALS (p=6.0×10, 95% CI 2.8 to 7.8 years). The mean age of onset of genetic sporadic ALS was 2.9 years younger than non-genetic sporadic ALS (p=0.011, 95% CI 0.7 to 5.2 years). There was no difference between the mean age of onset in genetic sporadic ALS and familial ALS (p=0.097).

Conclusions: People with familial ALS have an age of onset about 5 years younger than those with apparently sporadic ALS, and we have shown that this is a result of Mendelian gene variants lowering the age of onset, rather than ascertainment bias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jnnp-2018-319089DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6518463PMC
March 2019

Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases.

Mol Neurodegener 2018 08 8;13(1):41. Epub 2018 Aug 8.

Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, 90095, USA.

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease for which the genetic contribution is incompletely understood.

Methods: We conducted a joint analysis of 5,523,934 imputed SNPs in two newly-genotyped progressive supranuclear palsy cohorts, primarily derived from two clinical trials (Allon davunetide and NNIPPS riluzole trials in PSP) and a previously published genome-wide association study (GWAS), in total comprising 1646 cases and 10,662 controls of European ancestry.

Results: We identified 5 associated loci at a genome-wide significance threshold P < 5 × 10, including replication of 3 loci from previous studies and 2 novel loci at 6p21.1 and 12p12.1 (near RUNX2 and SLCO1A2, respectively). At the 17q21.31 locus, stepwise regression analysis confirmed the presence of multiple independent loci (localized near MAPT and KANSL1). An additional 4 loci were highly suggestive of association (P < 1 × 10). We analyzed the genetic correlation with multiple neurodegenerative diseases, and found that PSP had shared polygenic heritability with Parkinson's disease and amyotrophic lateral sclerosis.

Conclusions: In total, we identified 6 additional significant or suggestive SNP associations with PSP, and discovered genetic overlap with other neurodegenerative diseases. These findings clarify the pathogenesis and genetic architecture of PSP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13024-018-0270-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6083608PMC
August 2018

Genome-wide Analyses Identify KIF5A as a Novel ALS Gene.

Neuron 2018 03;97(6):1268-1283.e6

Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.

To identify novel genes associated with ALS, we undertook two lines of investigation. We carried out a genome-wide association study comparing 20,806 ALS cases and 59,804 controls. Independently, we performed a rare variant burden analysis comparing 1,138 index familial ALS cases and 19,494 controls. Through both approaches, we identified kinesin family member 5A (KIF5A) as a novel gene associated with ALS. Interestingly, mutations predominantly in the N-terminal motor domain of KIF5A are causative for two neurodegenerative diseases: hereditary spastic paraplegia (SPG10) and Charcot-Marie-Tooth type 2 (CMT2). In contrast, ALS-associated mutations are primarily located at the C-terminal cargo-binding tail domain and patients harboring loss-of-function mutations displayed an extended survival relative to typical ALS cases. Taken together, these results broaden the phenotype spectrum resulting from mutations in KIF5A and strengthen the role of cytoskeletal defects in the pathogenesis of ALS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2018.02.027DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867896PMC
March 2018

Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials.

Neurology 2017 Oct 4;89(18):1915-1922. Epub 2017 Oct 4.

From the Department of Neurology, Brain Centre Rudolf Magnus (R.P.A.v.E., F.P.D., W.v.R., J.H.V., L.H.v.d.B., M.A.v.E.), and Department of Biostatistics and Research Support (M.J.C.E.), University Medical Centre Utrecht, the Netherlands; Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute Centre (A.R.J., W.S., A.S., C.E.S., A.A.-C.), Department of Basic and Clinical Neuroscience, King's College London; Sheffield Institute for Translational Neuroscience (SITraN) (P.J.S.), University of Sheffield, South Yorkshire; Department of Clinical Neuroscience (P.N.L.), Trafford Centre for Biomedical Research, Brighton and Sussex Medical School, Falmer, Brighton; The Walton Centre NHS Trust (C.A.Y.), Liverpool, UK; Istituti Clinici Scientifici Maugeri IRCSS (G.M.), Milan; Department of Neuroscience (J.M.), Sant'Agostino-Estense Hospital and University of Modena and Reggio Emilia, Modena; Department of Neurology (G.B.), Azienda Universitario Ospedaliera di Cagliari and University of Cagliari; Istituti Clinici Scientifici Maugeri IRCSS (P.V.), Mistretta, Italy; Rijnstate Ziekenhuis (E.V.), Arnhem, the Netherlands; Rita Levi Montalcini' Department of Neuroscience (A.C.), ALS Centre, University of Torino; and Azienda Ospedaliera Città della Salute e della Scienza (A.C.), Turin, Italy.

Objective: To assess whether genetic subgroups in recent amyotrophic lateral sclerosis (ALS) trials responded to treatment with lithium carbonate, but that the treatment effect was lost in a large cohort of nonresponders.

Methods: Individual participant data were obtained from 3 randomized trials investigating the efficacy of lithium carbonate. We matched clinical data with data regarding the and genotype. Our primary outcome was survival at 12 months. On an exploratory basis, we assessed whether the effect of lithium depended on the genotype.

Results: Clinical data were available for 518 of the 606 participants. Overall, treatment with lithium carbonate did not improve 12-month survival (hazard ratio [HR] 1.0, 95% confidence interval [CI] 0.7-1.4; = 0.96). Both the and genotype were independent predictors of survival (HR 2.4, 95% CI 1.3-4.3; = 0.006 and HR 2.5, 95% CI 1.1-5.2; = 0.032, respectively). The effect of lithium was different for carriers ( = 0.027), but not for carriers ( = 0.22). The 12-month survival probability for carriers treated with lithium carbonate improved from 40.1% (95% CI 23.2-69.1) to 69.7% (95% CI 50.4-96.3).

Conclusions: This study incorporated genetic data into past ALS trials to determine treatment effects in a genetic post hoc analysis. Our results suggest that we should reorient our strategies toward finding treatments for ALS, start focusing on genotype-targeted treatments, and standardize genotyping in order to optimize randomization and analysis for future clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000004606DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5664299PMC
October 2017

Detection of long repeat expansions from PCR-free whole-genome sequence data.

Genome Res 2017 11 8;27(11):1895-1903. Epub 2017 Sep 8.

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 9RX, United Kingdom.

Identifying large expansions of short tandem repeats (STRs), such as those that cause amyotrophic lateral sclerosis (ALS) and fragile X syndrome, is challenging for short-read whole-genome sequencing (WGS) data. A solution to this problem is an important step toward integrating WGS into precision medicine. We developed a software tool called ExpansionHunter that, using PCR-free WGS short-read data, can genotype repeats at the locus of interest, even if the expanded repeat is larger than the read length. We applied our algorithm to WGS data from 3001 ALS patients who have been tested for the presence of the repeat expansion with repeat-primed PCR (RP-PCR). Compared against this truth data, ExpansionHunter correctly classified all (212/212, 95% CI [0.98, 1.00]) of the expanded samples as either expansions (208) or potential expansions (4). Additionally, 99.9% (2786/2789, 95% CI [0.997, 1.00]) of the wild-type samples were correctly classified as wild type by this method with the remaining three samples identified as possible expansions. We further applied our algorithm to a set of 152 samples in which every sample had one of eight different pathogenic repeat expansions, including those associated with fragile X syndrome, Friedreich's ataxia, and Huntington's disease, and correctly flagged all but one of the known repeat expansions. Thus, ExpansionHunter can be used to accurately detect known pathogenic repeat expansions and provides researchers with a tool that can be used to identify new pathogenic repeat expansions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.225672.117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668946PMC
November 2017

A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK.

Brain 2017 Jun;140(6):1611-1618

Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, SE5 9RX, UK.

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of motor neurons. About 25 genes have been verified as relevant to the disease process, with rare and common variation implicated. We used next generation sequencing and repeat sizing to comprehensively assay genetic variation in a panel of known amyotrophic lateral sclerosis genes in 1126 patient samples and 613 controls. About 10% of patients were predicted to carry a pathological expansion of the C9orf72 gene. We found an increased burden of rare variants in patients within the untranslated regions of known disease-causing genes, driven by SOD1, TARDBP, FUS, VCP, OPTN and UBQLN2. We found 11 patients (1%) carried more than one pathogenic variant (P = 0.001) consistent with an oligogenic basis of amyotrophic lateral sclerosis. These findings show that the genetic architecture of amyotrophic lateral sclerosis is complex and that variation in the regulatory regions of associated genes may be important in disease pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awx082DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445258PMC
June 2017

ATXN2 trinucleotide repeat length correlates with risk of ALS.

Neurobiol Aging 2017 03 24;51:178.e1-178.e9. Epub 2016 Nov 24.

Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.

We investigated a CAG trinucleotide repeat expansion in the ATXN2 gene in amyotrophic lateral sclerosis (ALS). Two new case-control studies, a British dataset of 1474 ALS cases and 567 controls, and a Dutch dataset of 1328 ALS cases and 691 controls were analyzed. In addition, to increase power, we systematically searched PubMed for case-control studies published after 1 August 2010 that investigated the association between ATXN2 intermediate repeats and ALS. We conducted a meta-analysis of the new and existing studies for the relative risks of ATXN2 intermediate repeat alleles of between 24 and 34 CAG trinucleotide repeats and ALS. There was an overall increased risk of ALS for those carrying intermediate sized trinucleotide repeat alleles (odds ratio 3.06 [95% confidence interval 2.37-3.94]; p = 6 × 10), with an exponential relationship between repeat length and ALS risk for alleles of 29-32 repeats (R = 0.91, p = 0.0002). No relationship was seen for repeat length and age of onset or survival. In contrast to trinucleotide repeat diseases, intermediate ATXN2 trinucleotide repeat expansion in ALS does not predict age of onset but does predict disease risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2016.11.010DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302215PMC
March 2017

Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis.

Amyotroph Lateral Scler Frontotemporal Degener 2016 Oct - Nov;17(7-8):593-599. Epub 2016 Sep 1.

a Maurice Wohl Clinical Neuroscience Institute, King's College London, Institute of Psychiatry, Psychology and Neuroscience , London , UK.

Our objective was to identify whether rare genetic variation in amyotrophic lateral sclerosis (ALS) candidate survival genes modifies ALS survival. Candidate genes were selected based on evidence for modifying ALS survival. Each tail of the extreme 1.5% of survival was selected from the UK MND DNA Bank and all samples available underwent whole genome sequencing. A replication set from the Netherlands was used for validation. Sequences of candidate survival genes were extracted and variants passing quality control with a minor allele frequency ≤0.05 were selected for association testing. Analysis was by burden testing using SKAT. Candidate survival genes UNC13A, KIFAP3, and EPHA4 were tested for association in a UK sample comprising 25 short survivors and 25 long survivors. Results showed that only SNVs in UNC13A were associated with survival (p = 6.57 × 10). SNV rs10419420:G > A was found exclusively in long survivors (3/25) and rs4808092:G > A exclusively in short survivors (4/25). These findings were not replicated in a Dutch sample. In conclusion, population specific rare variants of UNC13A may modulate survival in ALS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/21678421.2016.1213852DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125285PMC
October 2017

Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis.

Nat Genet 2016 09 25;48(9):1043-8. Epub 2016 Jul 25.

Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577 cases and 23,475 controls, combined with 2,579 cases and 2,767 controls in an independent replication cohort, we fine-mapped a new risk locus on chromosome 21 and identified C21orf2 as a gene associated with ALS risk. In addition, we identified MOBP and SCFD1 as new associated risk loci. We established evidence of ALS being a complex genetic trait with a polygenic architecture. Furthermore, we estimated the SNP-based heritability at 8.5%, with a distinct and important role for low-frequency variants (frequency 1-10%). This study motivates the interrogation of larger samples with full genome coverage to identify rare causal variants that underpin ALS risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3622DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556360PMC
September 2016

NEK1 variants confer susceptibility to amyotrophic lateral sclerosis.

Nat Genet 2016 09 25;48(9):1037-42. Epub 2016 Jul 25.

Neurogenetics Group, Division of Brain Sciences, Imperial College London, London, UK.

To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3626DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560030PMC
September 2016

Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study.

PLoS Med 2016 06 21;13(6):e1001976. Epub 2016 Jun 21.

Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America.

Background: C-reactive protein (CRP) is associated with immune, cardiometabolic, and psychiatric traits and diseases. Yet it is inconclusive whether these associations are causal.

Methods And Findings: We performed Mendelian randomization (MR) analyses using two genetic risk scores (GRSs) as instrumental variables (IVs). The first GRS consisted of four single nucleotide polymorphisms (SNPs) in the CRP gene (GRSCRP), and the second consisted of 18 SNPs that were significantly associated with CRP levels in the largest genome-wide association study (GWAS) to date (GRSGWAS). To optimize power, we used summary statistics from GWAS consortia and tested the association of these two GRSs with 32 complex somatic and psychiatric outcomes, with up to 123,865 participants per outcome from populations of European ancestry. We performed heterogeneity tests to disentangle the pleiotropic effect of IVs. A Bonferroni-corrected significance level of less than 0.0016 was considered statistically significant. An observed p-value equal to or less than 0.05 was considered nominally significant evidence for a potential causal association, yet to be confirmed. The strengths (F-statistics) of the IVs were 31.92-3,761.29 and 82.32-9,403.21 for GRSCRP and GRSGWAS, respectively. CRP GRSGWAS showed a statistically significant protective relationship of a 10% genetically elevated CRP level with the risk of schizophrenia (odds ratio [OR] 0.86 [95% CI 0.79-0.94]; p < 0.001). We validated this finding with individual-level genotype data from the schizophrenia GWAS (OR 0.96 [95% CI 0.94-0.98]; p < 1.72 × 10-6). Further, we found that a standardized CRP polygenic risk score (CRPPRS) at p-value thresholds of 1 × 10-4, 0.001, 0.01, 0.05, and 0.1 using individual-level data also showed a protective effect (OR < 1.00) against schizophrenia; the first CRPPRS (built of SNPs with p < 1 × 10-4) showed a statistically significant (p < 2.45 × 10-4) protective effect with an OR of 0.97 (95% CI 0.95-0.99). The CRP GRSGWAS showed that a 10% increase in genetically determined CRP level was significantly associated with coronary artery disease (OR 0.88 [95% CI 0.84-0.94]; p < 2.4 × 10-5) and was nominally associated with the risk of inflammatory bowel disease (OR 0.85 [95% CI 0.74-0.98]; p < 0.03), Crohn disease (OR 0.81 [95% CI 0.70-0.94]; p < 0.005), psoriatic arthritis (OR 1.36 [95% CI 1.00-1.84]; p < 0.049), knee osteoarthritis (OR 1.17 [95% CI 1.01-1.36]; p < 0.04), and bipolar disorder (OR 1.21 [95% CI 1.05-1.40]; p < 0.007) and with an increase of 0.72 (95% CI 0.11-1.34; p < 0.02) mm Hg in systolic blood pressure, 0.45 (95% CI 0.06-0.84; p < 0.02) mm Hg in diastolic blood pressure, 0.01 ml/min/1.73 m2 (95% CI 0.003-0.02; p < 0.005) in estimated glomerular filtration rate from serum creatinine, 0.01 g/dl (95% CI 0.0004-0.02; p < 0.04) in serum albumin level, and 0.03 g/dl (95% CI 0.008-0.05; p < 0.009) in serum protein level. However, after adjustment for heterogeneity, neither GRS showed a significant effect of CRP level (at p < 0.0016) on any of these outcomes, including coronary artery disease, nor on the other 20 complex outcomes studied. Our study has two potential limitations: the limited variance explained by our genetic instruments modeling CRP levels in blood and the unobserved bias introduced by the use of summary statistics in our MR analyses.

Conclusions: Genetically elevated CRP levels showed a significant potentially protective causal relationship with risk of schizophrenia. We observed nominal evidence at an observed p < 0.05 using either GRSCRP or GRSGWAS-with persistence after correction for heterogeneity-for a causal relationship of elevated CRP levels with psoriatic osteoarthritis, rheumatoid arthritis, knee osteoarthritis, systolic blood pressure, diastolic blood pressure, serum albumin, and bipolar disorder. These associations remain yet to be confirmed. We cannot verify any causal effect of CRP level on any of the other common somatic and neuropsychiatric outcomes investigated in the present study. This implies that interventions that lower CRP level are unlikely to result in decreased risk for the majority of common complex outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1001976DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4915710PMC
June 2016

Association of a Locus in the CAMTA1 Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis.

JAMA Neurol 2016 07;73(7):812-20

Academic Neurology Unit, Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, England.

Importance: Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disorder with a poor prognosis and a median survival of 3 years. However, a significant proportion of patients survive more than 10 years from symptom onset.

Objective: To identify gene variants influencing survival in ALS.

Design, Setting, And Participants: This genome-wide association study (GWAS) analyzed survival in data sets from several European countries and the United States that were collected by the Italian Consortium for the Genetics of ALS and the International Consortium on Amyotrophic Lateral Sclerosis Genetics. The study population included 4256 patients with ALS (3125 [73.4%] deceased) with genotype data extended to 7 174 392 variants by imputation analysis. Samples of DNA were collected from January 1, 1993, to December 31, 2009, and analyzed from March 1, 2014, to February 28, 2015.

Main Outcomes And Measures: Cox proportional hazards regression under an additive model with adjustment for age at onset, sex, and the first 4 principal components of ancestry, followed by meta-analysis, were used to analyze data. Survival distributions for the most associated genetic variants were assessed by Kaplan-Meier analysis.

Results: Among the 4256 patients included in the analysis (2589 male [60.8%] and 1667 female [39.2%]; mean [SD] age at onset, 59 [12] years), the following 2 novel loci were significantly associated with ALS survival: at 10q23 (rs139550538; P = 1.87 × 10-9) and in the CAMTA1 gene at 1p36 (rs2412208, P = 3.53 × 10-8). At locus 10q23, the adjusted hazard ratio for patients with the rs139550538 AA or AT genotype was 1.61 (95% CI, 1.38-1.89; P = 1.87 × 10-9), corresponding to an 8-month reduction in survival compared with TT carriers. For rs2412208 CAMTA1, the adjusted hazard ratio for patients with the GG or GT genotype was 1.17 (95% CI, 1.11-1.24; P = 3.53 × 10-8), corresponding to a 4-month reduction in survival compared with TT carriers.

Conclusions And Relevance: This GWAS robustly identified 2 loci at genome-wide levels of significance that influence survival in patients with ALS. Because ALS is a rare disease and prevention is not feasible, treatment that modifies survival is the most realistic strategy. Therefore, identification of modifier genes that might influence ALS survival could improve the understanding of the biology of the disease and suggest biological targets for pharmaceutical intervention. In addition, genetic risk scores for survival could be used as an adjunct to clinical trials to account for the genetic contribution to survival.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamaneurol.2016.1114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5556366PMC
July 2016

The role of TREM2 R47H as a risk factor for Alzheimer's disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson's disease.

Alzheimers Dement 2015 Dec 30;11(12):1407-1416. Epub 2015 Apr 30.

Department of Clinical Neuroscience, Institute of Psychiatry, King's College London, London, UK.

A rare variant in TREM2 (p.R47H, rs75932628) was recently reported to increase the risk of Alzheimer's disease (AD) and, subsequently, other neurodegenerative diseases, i.e. frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Here we comprehensively assessed TREM2 rs75932628 for association with these diseases in a total of 19,940 previously untyped subjects of European descent. These data were combined with those from 28 published data sets by meta-analysis. Furthermore, we tested whether rs75932628 shows association with amyloid beta (Aβ42) and total-tau protein levels in the cerebrospinal fluid (CSF) of 828 individuals with AD or mild cognitive impairment. Our data show that rs75932628 is highly significantly associated with the risk of AD across 24,086 AD cases and 148,993 controls of European descent (odds ratio or OR = 2.71, P = 4.67 × 10(-25)). No consistent evidence for association was found between this marker and the risk of FTLD (OR = 2.24, P = .0113 across 2673 cases/9283 controls), PD (OR = 1.36, P = .0767 across 8311 cases/79,938 controls) and ALS (OR = 1.41, P = .198 across 5544 cases/7072 controls). Furthermore, carriers of the rs75932628 risk allele showed significantly increased levels of CSF-total-tau (P = .0110) but not Aβ42 suggesting that TREM2's role in AD may involve tau dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jalz.2014.12.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4627856PMC
December 2015
-->