Publications by authors named "Aleida Mandiarote"

3 Publications

  • Page 1 of 1

Outer membrane vesicles extracted from Neisseria meningitidis serogroup X for prevention of meningococcal disease in Africa.

Pharmacol Res 2017 Jul 8;121:194-201. Epub 2017 May 8.

Finlay Institute, P.O. Box 16000, La Lisa, Havana, Cuba.

Meningococcal disease is caused mainly by serogroups A, B, C, Y, W of N. meningitidis. However, numerous cases of meningitis caused by serogroup X N. meningitidis (MenX) have recently been reported in several African countries. Currently, there are no licensed vaccines against this pathogen and most of the MenX cases have been caused by meningococci from clonal complex (c.c) 181. Detergent extracted meningococcal outer membrane vesicle (dOMV) vaccines have previously shown to be safe and effective against epidemics of serogroup B meningococcal disease in all age groups. The aim of this work is therefore to obtain, characterize and evaluate the vaccine potential of dOMVs derived from a MenX strain (OMVx). Three experimental lots of OMVx were prepared by deoxycholate extraction from the MenX strain BF 2/97. Size and morphology of the vesicles was determined by Dynamic Light Scattering and electron microscopy, whereas the antigenic composition was characterized by gel electrophoresis and immunoblotting. OMVx were thereafter adsorbed to aluminium hydroxide (OMVx/AL) and two doses of OMVx were administered s.c. to groups of Balb/c mice three weeks apart. The immunogenicity and functional antibody activities in sera were evaluated by ELISA (anti-OMVx specific IgG responses) and serum bactericidal activity (SBA) assay. The size range of OMVx was shown to be between 90 and 120nm, whereas some of the antigens detected were the outer membrane proteins PorA, OpcA and RmpM. The OMVx/AL elicited high anti-OMVx antibody responses with bactericidal activity and no bactericidal activity was observed in the control group of no immunised mice. The results demonstrate that OMVx are immunogenic and could form part of a future vaccine to prevent the majority of meningococcal disease in the African meningitis belt.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2017.04.030DOI Listing
July 2017

Immune responses of a meningococcal A + W outer membrane vesicle (OMV) vaccine with and without aluminium hydroxide adjuvant in two different mouse strains.

APMIS 2016 Nov 20;124(11):996-1003. Epub 2016 Sep 20.

Norwegian Institute of Public Health (NIPH), Domain for Infection Control and Environmental Health, Oslo, Norway.

Meningococci (Neisseria meningiditis) of serogroups A and W have caused large epidemics of meningitis in sub-Saharan Africa for decades, and affordable and multivalent vaccines, effective in all age groups, are needed. A bivalent serogroup A and W (A + W) meningococcal vaccine candidate consisting of deoxycholate-extracted outer membrane vesicles (OMV) from representative African disease isolates was previously found to be highly immunogenic in outbred mice when formulated with the adjuvant aluminium hydroxide (AH). OMV has been shown to have inherent adjuvant properties. In order to study the importance of AH and genetical differences between mice strains on immune responses, we compared the immunogenicity of the A + W OMV vaccine when formulated with or without AH in inbred C57BL/6J and BALB/cJ mice (Th1 and Th2 dominant strains, respectively). The immunogenicity of the vaccine was found to be comparable in the two mice strains despite their different immune profiles. Adsorption to AH increased anti-OMV IgG levels and serum bactericidal activity (SBA). The immune responses were increased by each dose for the adsorbed vaccine, but the third dose did not significantly improve the immunogenicity further. Thus, a vaccine formulation with the A and W OMV will likely benefit from including AH as adjuvant.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/apm.12589DOI Listing
November 2016

A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models.

BMC Immunol 2013 25;14 Suppl 1:S8. Epub 2013 Feb 25.

Research & Development Vice-presidency, Finlay Institute, Havana, Cuba.

Whooping cough remains a health problem despite high vaccination coverage. It has been recommended that development of new strategies provide long-lasting immunity. The aim of this work was to evaluate the potential of proteoliposomes (PL) extracted from Bordetella pertussis as a vaccine candidate against whooping cough. The size of the B. pertussis PL was estimated to be 96.7 ± 50.9 nm by Scanning Correlation Spectroscopy and the polydispersity index was 0.268. Western blots using monoclonal antibodies revealed the presence of pertussis toxin, pertactin, and fimbriae 3. The Limulus Amebocyte Lisate (LAL) assay showed endotoxin levels lower than those reported for whole cell pertussis licensed vaccines, while the Pyrogen Test indicated 75 ng/mL/Kg. The PL showed high protection capacity in mouse challenge models. There was 89.7% survival in the intracerebral challenge and total reduction of the number of CFU in the intranasal challenge. No significant differences (p > 0.05) were observed between mice immunized with B. pertussis PL and the Cuban DTwP vaccine, whichever challenge model used. These results encouraged us to continue the development of the B. pertussis PL as a component of a new combined vaccine formulated with tetanus and diphtheria toxoids or as a booster dose for adolescents and adults.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2172-14-S1-S8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582456PMC
August 2013