Publications by authors named "Alberto Maria Martelli"

17 Publications

  • Page 1 of 1

Enhancing radiosensitivity of melanoma cells through very high dose rate pulses released by a plasma focus device.

PLoS One 2018 29;13(6):e0199312. Epub 2018 Jun 29.

University of Bologna, Department of Physics and Astronomy, Bologna, Italy.

Radiation therapy is a useful and standard tumor treatment strategy. Despite recent advances in delivery of ionizing radiation, survival rates for some cancer patients are still low because of recurrence and radioresistance. This is why many novel approaches have been explored to improve radiotherapy outcome. Some strategies are focused on enhancement of accuracy in ionizing radiation delivery and on the generation of greater radiation beams, for example with a higher dose rate. In the present study we proposed an in vitro research of the biological effects of very high dose rate beam on SK-Mel28 and A375, two radioresistant human melanoma cell lines. The beam was delivered by a pulsed plasma device, a "Mather type" Plasma Focus for medical applications. We hypothesized that this pulsed X-rays generator is significantly more effective to impair melanoma cells survival compared to conventional X-ray tube. Very high dose rate treatments were able to reduce clonogenic efficiency of SK-Mel28 and A375 more than the X-ray tube and to induce a greater, less easy-to-repair DNA double-strand breaks. Very little is known about biological consequences of such dose rate. Our characterization is preliminary but is the first step toward future clinical considerations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199312PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6025851PMC
April 2019

Protective effect of different antioxidant agents in UVB-irradiated keratinocytes.

Eur J Histochem 2017 Sep 18;61(3):2784. Epub 2017 Sep 18.

University of Urbino "Carlo Bo".

Skin cells can respond to UVB-induced damage either by tolerating it, or restoring it through antioxidant activation and DNA repair mechanisms or, ultimately, undergoing programmed cell death, when damage is massive. Nutritional factors, in particular, food antioxidants, have attracted much interest because of their potential use in new preventive, protective, and therapeutic strategies for chronic degenerative diseases, including skin inflammation and cancer. Some polyphenols, present in virgin olive oil, well tolerated by organism after oral administration, show a variety of pharmacological and clinical benefits such as anti-oxidant, anti-cancer, anti-inflammatory, and neuro-protective activities. Here, the protective effects of antioxidant compounds against UV-induced apoptosis have been described in HaCat cell line. Human keratinocytes were pre-treated with antioxidants before UVB exposure and their effects have been evaluated by means of ultrastructural analyses. After UVB radiation, a known cell death trigger, typical apoptotic features, absent in control condition and in antioxidant alone-treated cells, appear. An evident numerical decrease of ultrastructural apoptotic patterns and TUNEL positive nuclei can be observed when natural antioxidants were supplied before cell death induction. These data have been confirmed by molecular investigation of caspase activity. In conclusion, this paper highlights antioxidant compound ability to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, a potential role in preventing skin damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4081/ejh.2017.2784DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5617901PMC
September 2017

Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia.

J Cell Physiol 2018 Mar 7;233(3):1796-1811. Epub 2017 Sep 7.

Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy.

Despite remarkable progress in polychemotherapy protocols, pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains fatal in around 20% of cases. Hence, novel targeted therapies are needed for patients with poor prognosis. Glucocorticoids (GCs) are drugs commonly administrated for B-ALL treatment. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin signaling pathway is frequently observed in B-ALL and contributes to GC-resistance. Here, we analyzed for the first time to our knowledge, the therapeutic potential of pan and isoform-selective PI3K p110 inhibitors, alone or combined with dexamethasone (DEX), in B-ALL leukemia cell lines and patient samples. We found that a pan PI3K p110 inhibitor displayed the most powerful cytotoxic effects in B-ALL cells, by inducing cell cycle arrest and apoptosis. Both a pan PI3K p110 inhibitor and a dual γ/δ PI3K p110 inhibitor sensitized B-ALL cells to DEX by restoring nuclear translocation of the GC receptor and counteracted stroma-induced DEX-resistance. Finally, gene expression analysis documented that, on one hand the combination consisting of a pan PI3K p110 inhibitor and DEX strengthened the DEX-induced up- or down-regulation of several genes involved in apoptosis, while on the other, it rescued the effects of genes that might be involved in GC-resistance. Overall, our findings strongly suggest that PI3K p110 inhibition could be a promising strategy for treating B-ALL patients by improving GC therapeutic effects and/or overcoming GC-resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.26135DOI Listing
March 2018

Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene.

J Hematol Oncol 2017 Jan 21;10(1):26. Epub 2017 Jan 21.

Department of Pediatrics, "Lalla Seràgnoli", Hematology-Oncology Unit, Sant'Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 11, 40137, Bologna, Italy.

Background: CBFA2T3-GLIS2 is a fusion gene found in 17% of non-Down syndrome acute megakaryoblastic leukemia (non-DS AMKL, FAB M7) and in 8% of pediatric cytogenetically normal acute myeloid leukemia (CN-AML, in association with several French-American-British (FAB) subtypes). Children with AML harboring this aberration have a poor outcome, regardless of the FAB subtype. This fusion gene drives a peculiar expression pattern and leads to overexpression of some of Hedgehog-related genes. GLI-similar protein 2 (GLIS2) is closely related to the GLI family, the final effectors of classic Hedgehog pathway. These observations lend compelling support to the application of GLI inhibitors in the treatment of AML with the aberration CBFA2T3-GLIS2. GANT61 is, nowadays, the most potent inhibitor of GLI family proteins.

Methods: We exposed to GANT61 AML cell lines and primary cells positive and negative for CBFA2T3-GLIS2 and analyzed the effect on cellular viability, induction of apoptosis, cell cycle, and expression profile.

Results: As compared to AML cells without GLIS2 fusion, GANT61 exposure resulted in higher sensitivity of both cell lines and primary AML cells carrying CBFA2T3-GLIS2 to undergo apoptosis and G1 cell cycle arrest. Remarkably, gene expression studies demonstrated downregulation of GLIS2-specific signature genes in both treated cell lines and primary cells, in comparison with untreated cells. Moreover, chromatin immunoprecipitation analysis revealed direct regulation by GLIS2 chimeric protein of DNMT1 and DNMT3B, two genes implicated in important epigenetic functions.

Conclusions: Our findings indicate that the GLI inhibitor GANT61 may be used to specifically target the CBFA2T3-GLIS2 fusion gene in pediatric AML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13045-017-0396-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5251306PMC
January 2017

Improving nelarabine efficacy in T cell acute lymphoblastic leukemia by targeting aberrant PI3K/AKT/mTOR signaling pathway.

J Hematol Oncol 2016 10 24;9(1):114. Epub 2016 Oct 24.

Institute of Molecular Genetics, Rizzoli Orthopedic Institute, National Research Council, Bologna, Italy.

Background: Although in recent years, the introduction of novel chemotherapy protocols has improved the outcome of T cell acute lymphoblastic leukemia (T-ALL) patients, refractory and/or relapsing disease remains a foremost concern. In this context, a major contribution was provided by the introduction of the nucleoside analog nelarabine, approved for salvage treatment of T-ALL patients with refractory/relapsed disease. However, nelarabine could induce a life-threatening, dose-dependent neurotoxicity. To improve nelarabine efficacy, we have analyzed its molecular targets, testing selective inhibitors of such targets in combination with nelarabine.

Methods: The effectiveness of nelarabine as single agent or in combination with PI3K, Bcl2, and MEK inhibitors was evaluated on human T-ALL cell lines and primary T-ALL refractory/relapsed lymphoblasts. The efficacy of signal modulators in terms of cytotoxicity, induction of apoptosis, and changes in gene and protein expression was assessed by flow cytometry, western blotting, and quantitative real-time PCR in T-ALL settings.

Results: Treatment with nelarabine as a single agent identified two groups of T-ALL cell lines, one sensitive and one resistant to the drug. Whereas sensitive T-ALL cells showed a significant increase of apoptosis and a strong down-modulation of PI3K signaling, resistant T-ALL cells showed a hyperactivation of AKT and MEK/ERK1/2 signaling pathways, not caused by differences in the expression of nelarabine transporters or metabolic activators. We then studied the combination of nelarabine with the PI3K inhibitors (both pan and dual γ/δ inhibitors), with the Bcl2 specific inhibitor ABT199, and with the MEK inhibitor trametinib on both T-ALL cell lines and patient samples at relapse, which displayed constitutive activation of PI3K signaling and resistance to nelarabine alone. The combination with the pan PI3K inhibitor ZSTK-474 was the most effective in inhibiting the growth of T-ALL cells and was synergistic in decreasing cell survival and inducing apoptosis in nelarabine-resistant T-ALL cells. The drug combination caused AKT dephosphorylation and a downregulation of Bcl2, while nelarabine alone induced an increase in p-AKT and Bcl2 signaling in the resistant T-ALL cells and relapsed patient samples.

Conclusions: These findings indicate that nelarabine in combination with PI3K inhibitors may be a promising therapeutic strategy for the treatment of T-ALL relapsed patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13045-016-0344-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075755PMC
October 2016

Synergistic cytotoxic effects of bortezomib and CK2 inhibitor CX-4945 in acute lymphoblastic leukemia: turning off the prosurvival ER chaperone BIP/Grp78 and turning on the pro-apoptotic NF-κB.

Oncotarget 2016 Jan;7(2):1323-40

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

The proteasome inhibitor bortezomib is a new targeted treatment option for refractory or relapsed acute lymphoblastic leukemia (ALL) patients. However, a limited efficacy of bortezomib alone has been reported. A terminal pro-apoptotic endoplasmic reticulum (ER) stress/unfolded protein response (UPR) is one of the several mechanisms of bortezomib-induced apoptosis. Recently, it has been documented that UPR disruption could be considered a selective anti-leukemia therapy. CX-4945, a potent casein kinase (CK) 2 inhibitor, has been found to induce apoptotic cell death in T-ALL preclinical models, via perturbation of ER/UPR pathway. In this study, we analyzed in T- and B-ALL preclinical settings, the molecular mechanisms of synergistic apoptotic effects observed after bortezomib/CX-4945 combined treatment. We demonstrated that, adding CX-4945 after bortezomib treatment, prevented leukemic cells from engaging a functional UPR in order to buffer the bortezomib-mediated proteotoxic stress in ER lumen. We documented that the combined treatment decreased pro-survival ER chaperon BIP/Grp78 expression, via reduction of chaperoning activity of Hsp90. Bortezomib/CX-4945 treatment inhibited NF-κB signaling in T-ALL cell lines and primary cells from T-ALL patients, but, intriguingly, in B-ALL cells the drug combination activated NF-κB p65 pro-apoptotic functions. In fact in B-cells, the combined treatment induced p65-HDAC1 association with consequent repression of the anti-apoptotic target genes, Bcl-xL and XIAP. Exposure to NEMO (IKKγ)-binding domain inhibitor peptide reduced the cytotoxic effects of bortezomib/CX-4945 treatment. Overall, our findings demonstrated that CK2 inhibition could be useful in combination with bortezomib as a novel therapeutic strategy in both T- and B-ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.6361DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811463PMC
January 2016

Tyrosol prevents apoptosis in irradiated keratinocytes.

J Dermatol Sci 2015 Oct 6;80(1):61-8. Epub 2015 Jul 6.

DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy.

Background: Phenolic compounds, the biggest group of natural antioxidants, have attracted much attention due to their known and wide-ranging biological activities, as well as to their health effects. In particular, regardless their antioxidant activity, they play a key role in the control of several inflammation-associated processes as well as in improving antioxidant defense system. In an our previous work we have demonstrated the ability of Hydroxytyrosol, an ortho-diphenolic compound, essential component of oleuropein, in preventing apoptotic cell death induced by UVB radiation in HaCaT cell lines in vitro. In olive oil, besides Hydroxytyrosol, there are appreciable amounts of Tyrosol and its secoiridoid derivatives.

Objective: It has been well established that Tyrosol has a significantly lower antioxidant activity than Hydroxytyrosol, but despite this, recent studies suggest that Tyrosol exerts a powerful protective effect against oxidative injuries in cell systems and that it is able to improve the intracellular antioxidant defenses.

Materials And Methods: Here, Tyrosol effect has been evaluated in HaCaT cells exposed to UVB radiation by means of morphological and molecular analyses.

Results: Our study revealed the polyphenol ability in reducing apoptotic markers and in protecting HaCaT cells from damage.

Conclusion: These findings suggest an important role of Tyrosol in protecting cells from apoptotic cell death and encourage the use of this phytochemical as biological ingredient in topical preparations as possible tool to prevent skin damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdermsci.2015.07.002DOI Listing
October 2015

PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors.

Oncotarget 2015 Apr;6(12):10399-414

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496363PMC
http://dx.doi.org/10.18632/oncotarget.3295DOI Listing
April 2015

Antioxidants in the prevention of UVB-induced keratynocyte apoptosis.

J Photochem Photobiol B 2014 Dec 16;141:1-9. Epub 2014 Sep 16.

DiSTeVA, University of Urbino Carlo Bo, Urbino 61029, Italy.

Skin cells can respond to UVB-induced damage by counteracting it through antioxidant activation and DNA repair mechanisms or, when damage is massive by undergoing programmed cell death. Antioxidant factors, and, in particular, food compounds, have attracted much interest because of their potential use in new protective strategies for degenerative skin disorders. Melatonin, creatine and hydroxytyrosol show a variety of pharmacological and clinical benefits including anti-oxidant and anti-inflammatory activities. Here, the potential protective actions of antioxidant compounds against UVB-induced apoptosis were investigated in human keratinocytes. The cells were pre-treated with antioxidants before UVB exposure and their effect evaluated by means of ultrastructural and molecular analyses. After UVB radiation typical morphological apoptotic features and in situ DNA fragmentation after TUNEL reaction, appeared. A significant numerical decrease of apoptotic patterns could be observed when antioxidants were administrated before cell death induction. Moreover, both the intrinsic and extrinsic apoptotic pathways appeared activated after UVB radiation, and their down-regulation has been shown when antioxidants were added to cells before death induction. In conclusion, these compounds are able to prevent apoptotic cell death in human keratinocytes exposed to UVB, suggesting, for these molecules, an important role in preventing skin damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2014.09.004DOI Listing
December 2014

A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer.

BMC Cancer 2014 Feb 6;14:70. Epub 2014 Feb 6.

Department of Medical and Surgical Sciences, Unit of Medical Genetics, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.

Background: An early age at Breast Cancer (BC) onset may be a hallmark of inherited predisposition, but BRCA1/2 mutations are only found in a minority of younger BC patients. Among the others, a fraction may carry mutations in rarer BC genes, such as TP53, STK11, CDH1 and PTEN. As the identification of women harboring such mutations allows for targeted risk-management, the knowledge of associated manifestations and an accurate clinical and family history evaluation are warranted.

Case Presentation: We describe the case of a woman who developed an infiltrating ductal carcinoma of the right breast at the age of 32, a contralateral BC at age 36 and another BC of the right breast at 40. When she was 39 years-old, during a dermatological examination, mucocutaneous features suggestive of Cowden Syndrome, a disorder associated to germ-line PTEN mutations, were noticed. PTEN genetic testing revealed the novel c.71A > T (p.Asp24Val) mutation, whose deleterious effect, suggested by conservation data and in silico tools, was definitely demonstrated by the incapacity of mutant PTEN to inhibit Akt phosphorylation when used to complement PTEN-null cells. In BC tissue, despite the absence of LOH or somatic mutations of PTEN, Akt phosphorylation was markedly increased in comparison to normal tissue, thus implying additional somatic events into the deregulation of the PI3K/Akt/mTOR pathway and, presumably, into carcinogenesis. Hence, known oncogenic mutations in PIK3CA (exons 10 and 21) and AKT1 (exon 2) were screened in tumor DNA with negative results, which suggests that the responsible somatic event(s) is a different, uncommon one.

Conclusion: This case stresses the importance of clinical/genetic assessment of early-onset BC patients in order to identify mutation carriers, who are at high risk of new events, so requiring tailored management. Moreover, it revealed a novel PTEN mutation with pathogenic effect, pointing out, however, the need for further efforts to elucidate the molecular steps of PTEN-associated carcinogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2407-14-70DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922036PMC
February 2014

Monitoring of FLT3 phosphorylation status and its response to drugs by flow cytometry in AML blast cells.

Hematol Oncol 2008 Sep;26(3):159-66

Institute of Hematology 'John Paul II' Centre for High Technology Research and Education in Biomedical Sciences, Catholic University, Campobasso, Italy.

FLT3 mutation and overexpression in most acute myeloid leukaemia (AML) patients make this tyrosine kinase receptor an attractive therapeutic target. FLT3 kinase inhibitors are actually in clinical trials, thus it is critical to develop a reproducible and standardized method for screening of FLT3 activation and for monitoring its inhibition in response to drug in AML patients. We developed a flow cytometry method to analyse phosphorylated FLT3 (P-FLT3) in samples with <10(5) cells. The method was first validated in FLT3 wild-type (HL60/WT) and mutant (MV4-11/ITD(+)) as well as FLT3 negative (K562) cell lines. The method also proved to be reproducible in AML patient samples. Analysis was performed after exposure to drugs (CEP-701 and SU11657), in vitro and in vivo. In response to increasing drug concentrations, there was a linear reduction in P-FLT3. Intracellular flow cytometry analysis correlated with Western blot and XTT assays; flow cytometry data also correlated with FLT3 mutational status. The results highlight a rapid method to detect P-FLT3 protein at the single cell level by flow cytometry which enables an accurate assessment of FLT3 kinase activity in blast cells in response to novel tyrosine kinase inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hon.854DOI Listing
September 2008

PKC-zeta expression is lower in osteoblasts from arthritic patients: IL1-beta and TNF-alpha induce a similar decrease in non-arthritic human osteoblasts.

J Cell Biochem 2008 Feb;103(2):547-55

IGM-CNR, Sezione di Bologna c/o IOR, via di Barbiano 1/10, 40136 Bologna, Italy.

Protein kinase C (PKC) is a family of enzymes detected in a diverse range of cell types where they regulate various cellular functions such as proliferation, differentiation, cytoskeletal remodelling, cytokine production, and receptor-mediated signal transduction. In this study we have analyzed the expression of 11 PKC isoforms (-alpha, -beta(I), -beta(II), -gamma, -delta, -eta, -theta, -epsilon, -zeta, -iota/lambda, and -micro) in osteoblasts from patients with osteoarthritis (OA) and rheumatoid arthritis (RA) in comparison with osteoblasts from post-traumatic (PT) patients. By Western blotting analysis, nine isoforms, -alpha, -beta(I), -beta(II), -delta, -theta, - epsilon, -zeta, - iota/lambda, and -micro, were detected in osteoblasts. In RA and OA patients, PKC -theta and -micro were greater expressed whereas PKC-epsilon and -zeta decreased when compared with normal cells. The subcellular distribution and quantitative differences were confirmed by immuno-electron microscopy. Furthermore, we demonstrated that treatment with the proinflammatory cytokines, IL-1beta and TNF-alpha, significantly decreased PKC-zeta expression in PT osteoblasts. This suggests that proinflammatory cytokines can modulate the expression of this PKC isoform in osteoblasts in a way which is similar to changes detected in arthritic patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.21424DOI Listing
February 2008

Nuclear phospholipase C signaling through type 1 IGF receptor and its involvement in cell growth and differentiation.

Anticancer Res 2005 May-Jun;25(3B):2039-41

Cellular Signalling Laboratory, Department of Anatomical Sciences, University of Bologna, Italy.

The existence of a nuclear polyphosphoinositol metabolism, independent from that at the plasma cell membrane, is now widely recognized. Specific changes in the nuclear phosphatidylinositol (PtdIns) metabolism have been implicated in cell growth, differentiation and neoplastic transformation. Here, the main features of nuclear inositol lipid signaling through type I IGF receptor, is reviewed with particular attention to the role of inositide-specific phospholipase C (PI-PLC) beta1 in cell proliferation and differentiation, due to the peculiar localization of this molecule in the nuclear compartment.
View Article and Find Full Text PDF

Download full-text PDF

Source
November 2005

Quantitative immunodetection of key elements of polyphosphoinositide signal transduction in osteoblasts from arthritic patients shows a direct correlation with cell proliferation.

Histochem Cell Biol 2005 Aug 29;124(2):131-7. Epub 2005 Sep 29.

ITOI--CNR, Sezione di Bologna c/o IOR, via di Barbiano 1/10, 40136 Bologna, Italy.

Phosphoinositides play an essential role in diverse cellular functions such as cell proliferation, cytoskeletal regulation, intracellular vesicle trafficking, motility, cell metabolism and death. Alteration of these pathways is common to many diseases. In this study, we show that osteoblasts from patients affected by osteoarthritis (OA) and by rheumatoid arthritis (RA) present a decreased cell proliferation and a reduced expression of the key elements of polyphosphoinositide signal transduction such as phosphatidylinositol-3-kinase (PI 3K), phospholipase C gamma1 (PLCgamma1), and protein kinase C zeta (PKCzeta) compared to the post-traumatic (PT) patients. Our results suggest that a correlation may exist between the reduced osteoblast proliferation observed in OA and RA patients and the lowered expression of PI 3K, PLCgamma1, and PKCzeta enzymes. The reduced proliferation rate of osteoblasts in response to these signal transduction effectors could counteract the evolution of arthritic disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00418-005-0022-zDOI Listing
August 2005

Nuclear phospholipase C beta1 (PLCbeta1) affects CD24 expression in murine erythroleukemia cells.

J Biol Chem 2005 Jun 22;280(25):24221-6. Epub 2005 Apr 22.

Department of Anatomical Sciences, Cellular Signaling Laboratory, University of Bologna, 40126 Bologna, Italy.

Inositide-specific phospholipase C (PLC) beta1 is a key enzyme in nuclear lipid signal transduction affecting cell cycle progression and may be directly involved in regulation of gene expression and hematopoiesis. By microarrays, we compared the effect of nuclear PLCbeta1 overexpression with that of PLC M2b cytoplasmatic mutant, which is exclusively located in the cytoplasm, in murine erythroleukemia cells. Out of 9000 genes analyzed, the CD24 gene, coding for an antigen involved in differentiation and hematopoiesis as well, was up-regulated in cells overexpressing nuclear PLCbeta1 as compared with both cells overexpressing the M2b cytoplasmatic mutant and the wild type cells. Here we show that nuclear PLCbeta1 up-regulated the expression of CD24. The correlation was strengthened by the observation that when PLCbeta1 expression was silenced by means of small interfering RNA, CD24 expression was down-regulated. We also demonstrated that PLCbeta1-dependent up-modulation of CD24 was mediated, at least in part, at the transcriptional level, in that PLCbeta1 affected the CD24 promoter activity. Moreover, the up-regulation of CD24 was higher during erythroid differentiation of murine erythroleukemia cells. Altogether our findings, obtained by combining microarrays, phenotypic analysis, and small interfering RNA technology, identify CD24 as an molecular effector of nuclear PLCbeta1 signaling pathway in murine erythroleukemia cells and strengthen the contention that nuclear PLCbeta1 constitutes a key step in erythroid differentiation in vitro.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M411833200DOI Listing
June 2005

Nuclear diacylglycerol kinase-theta is activated in response to nerve growth factor stimulation of PC12 cells.

Cell Signal 2004 Nov;16(11):1263-71

Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato Locomotore, Cell Signalling Laboratory, Università degli Studi di Bologna, via Irnerio 48, 40126, Italy.

Previous evidence from independent laboratories has shown that the nucleus contains diacylglycerol kinase (DGK) isoforms, i.e., the enzymes, which yield phosphatidic acid from diacylglycerol, thus terminating protein kinase C-mediated signaling events. A DGK isoform, which resides in the nucleus of PC12 cells, is DGK-theta. Here, we show that nerve growth factor (NGF) treatment of serum-starved PC12 cells results in the stimulation of both a cytoplasmic and a nuclear DGK activity. However, time course analysis shows that cytoplasmic DGK activity peaked earlier than its nuclear counterpart. While nuclear DGK activity was dramatically down-regulated by a monoclonal antibody known for selectively inhibiting DGK-theta, cytoplasmic DGK activity was not. Moreover, nuclear DGK activity was stimulated by phosphatidylserine, an anionic phospholipid that had no effect on cytoplasmic DGK activity. Upon NGF stimulation, the amount and the activity of DGK-theta, which was bound to the insoluble nuclear matrix fraction, substantially increased. Epidermal growth factor up-regulated a nuclear DGK activity insensitive to anti-DGK-theta monoclonal antibody. Overall, our findings identify nuclear DGK-theta as a down-stream target of NGF signaling in PC12 cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2004.03.018DOI Listing
November 2004

Regulation of nuclear phospholipase C activity.

Acta Biochim Pol 2004 ;51(2):391-5

Cellular Signalling Laboratory, Department of Anatomical Sciences, University of Bologna, Italy.

A body of evidence, linking inositide-specific phospholipase C (PI-PLC) to the nucleus, is quite extensive. The main isoform in the nucleus is PI-PLCbeta1, whose activity is up-regulated in response to insulin-like growth factor-1 (IGF-1) or insulin stimulation. Whilst at the plasma membrane this PI-PLC is activated and regulated by Galphaq/alpha(11) and Gbetagamma subunits, there is yet no evidence that qalpha/alpha(11) is present within the nuclear compartment, neither GTP-gamma-S nor AlF4 can stimulate PI-PLCbeta1 activity in isolated nuclei. Here we review the evidence that upon occupancy of type 1 IGF receptor there is translocation to the nucleus of phosphorylated mitogen-activated protein kinase (MAPK) which phosphorylates nuclear PI-PLCbeta1 and triggers its signalling, hinting at a separate pathway of regulation depending on the subcellular location of PI-PLCbeta1. The difference in the regulation of the activity of PI-PLCbeta1mirrors the evidence that nuclear and cytoplasmatic inositides can differ markedly in their signalling capability. Indeed, we do know that agonists which affect nuclear inositol lipid cycle at the nucleus do not stimulate the one at the plasma membrane.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/035001391DOI Listing
February 2005