Publications by authors named "Alberto Celma"

14 Publications

  • Page 1 of 1

Changes in drug use in European cities during early COVID-19 lockdowns - A snapshot from wastewater analysis.

Environ Int 2021 Mar 26;153:106540. Epub 2021 Mar 26.

Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, the Netherlands. Electronic address:

The COVID-19 outbreak has forced countries to introduce severe restrictive measures to contain its spread. In particular, physical distancing and restriction of movement have had important consequences on human behaviour and potentially also on illicit drug use and supply. These changes can be associated with additional risks for users, in particular due to reduced access to prevention and harm reduction activities. Furthermore, there have been limitations in the amount of data about drug use which can be collected due to restrictions. To goal of this study was to obtain information about potential changes in illicit drug use impacted by COVID-19 restrictions. Wastewater samples were collected in seven cities in the Netherlands, Belgium, Spain and Italy at the beginning of lockdowns (March-May 2020). Using previously established and validated methods, levels of amphetamine (AMP), methamphetamine (METH), MDMA, benzoylecgonine (BE, the main metabolite of cocaine) and 11-nor-9-carboxy-Δ-tetrahydrocannabinol (THC-COOH, main metabolite of tetrahydrocannabinol (THC)) were measured and compared with findings from previous years. Important differences in levels of consumed drugs were observed across the considered countries. Whilst for some substances and locations, marked decreases in consumption could be observed (e.g., 50% decrease in MDMA levels compared to previous years). In some cases, similar or even higher levels compared to previous years could be found. Changes in weekly patterns were also observed, however these were not clearly defined for all locations and/or substances. Findings confirm that the current situation is highly heterogeneous and that it remains very difficult to explain and/or predict the effect that the present pandemic has on illicit drug use and availability. However, given the current difficulty in obtaining data due to restrictions, wastewater analysis can provide relevant information about the situation at the local level, which would be hard to obtain otherwise.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2021.106540DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997602PMC
March 2021

The embodiment of wastewater data for the estimation of illicit drug consumption in Spain.

Sci Total Environ 2021 Jun 26;772:144794. Epub 2021 Jan 26.

Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain. Electronic address:

Data obtained from wastewater analysis can provide rapid and complementary insights in illicit drug consumption at community level. Within Europe, Spain is an important country of transit of both cocaine and cannabis. The quantity of seized drugs and prevalence of their use rank Spain at the top of Europe. Hence, the implementation of a wastewater monitoring program at national level would help to get better understanding of spatial differences and trends in use of illicit drugs. In this study, a national wastewater campaign was performed for the first time to get more insight on the consumption of illicit drugs within Spain. The 13 Spanish cities monitored cover approximately 6 million inhabitants (12.8% of the Spanish population). Untreated wastewater samples were analyzed for urinary biomarkers of amphetamine, methamphetamine, MDMA, cocaine, and cannabis. In addition, weekend samples were monitored for 17 new psychoactive substances. Cannabis and cocaine are the most consumed drugs in Spain, but geographical variations showed, for instance, comparatively higher levels of methamphetamine in Barcelona and amphetamine in Bilbao, with about 1-fold higher consumption of these two substances in such metropolitan areas. For amphetamine, an enantiomeric profiling was performed in order to assure the results were due to consumption and not to illegal dumping of production residues. Furthermore, different correction factors for the excretion of cannabis were used to compare consumption estimations. All wastewater results were compared with previously reported data, national seizure data and general population survey data, were a reasonable agreement was found. Daily and yearly drug consumption were extrapolated to the entire Spanish population with due precautions because of the uncertainty associated. These data was further used to estimate the retail drug market, where for instance cocaine illicit consumption alone was calculated to contribute to 0.2-0.5% of the Spanish gross domestic product (ca. 3000-6000 million Euro/year).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144794DOI Listing
June 2021

New psychoactive substances in several European populations assessed by wastewater-based epidemiology.

Water Res 2021 May 27;195:116983. Epub 2021 Feb 27.

Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan, Italy.

Wastewater-based epidemiology (WBE) can be a useful tool to face some of the existing challenges in monitoring the use of new psychoactive substances (NPS), as it can provide objective and updated information. This Europe-wide study aimed to verify the suitability of WBE for investigating the use of NPS. Selected NPS were monitored in urban wastewater by high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). The main classical illicit drugs were monitored in the same samples to compare their levels with those of NPS. Raw composite wastewater samples were collected in 2016 and 2017 in 14 European countries (22 cities) following best practice sampling protocols. Methcathinone was most frequent (>65% of the cities), followed by mephedrone (>25% of the cities), and only mephedrone, methcathinone and methylone were found in both years. This study depicts the use of NPS in Europe, confirming that it is much lower than the use of classical drugs. WBE proved able to assess the qualitative and quantitative spatial and temporal profiles of NPS use. The results show the changeable nature of the NPS market and the importance of large WBE monitoring campaigns for selected priority NPS. WBE is valuable for complementing epidemiological studies to follow rapidly changing profiles of use of drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.116983DOI Listing
May 2021

International snapshot of new psychoactive substance use: Case study of eight countries over the 2019/2020 new year period.

Water Res 2021 Apr 3;193:116891. Epub 2021 Feb 3.

Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia. Electronic address:

There is considerable concern around the use of new psychoactive substances (NPS), but still little is known about how much they are really consumed. Analysis by forensics laboratories of seized drugs and post-mortem samples as well as hospital emergency rooms are the first line of identifying both 'new' NPS and those that are most dangerous to the community. However, NPS are not necessarily all seized by law enforcement agencies and only substances that contribute to fatalities or serious afflictions are recorded in post-mortem and emergency room samples. To gain a better insight into which NPS are most prevalent within a community, complementary data sources are required. In this work, influent wastewater was analysed from 14 sites in eight countries for a variety of NPS. All samples were collected over the 2019/2020 New Year period, a time which is characterized by celebrations and parties and therefore a time when more NPS may be consumed. Samples were extracted in the country of origin following a validated protocol and shipped to Australia for final analysis using two different mass spectrometric strategies. In total, more than 200 were monitored of which 16 substances were found, with geographical differences seen. This case study is the most comprehensive wastewater analysis study ever carried out for the identification of NPS and provides a starting point for future, ongoing monitoring of these substances.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2021.116891DOI Listing
April 2021

Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation.

Environ Sci Technol 2020 12 19;54(23):15120-15131. Epub 2020 Nov 19.

Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain.

Currently, the most powerful approach to monitor organic micropollutants (OMPs) in environmental samples is the combination of target, suspect, and nontarget screening strategies using high-resolution mass spectrometry (HRMS). However, the high complexity of sample matrices and the huge number of OMPs potentially present in samples at low concentrations pose an analytical challenge. Ion mobility separation (IMS) combined with HRMS instruments (IMS-HRMS) introduces an additional analytical dimension, providing extra information, which facilitates the identification of OMPs. The collision cross-section (CCS) value provided by IMS is unaffected by the matrix or chromatographic separation. Consequently, the creation of CCS databases and the inclusion of ion mobility within identification criteria are of high interest for an enhanced and robust screening strategy. In this work, a CCS library for IMS-HRMS, which is online and freely available, was developed for 556 OMPs in both positive and negative ionization modes using electrospray ionization. The inclusion of ion mobility data in widely adopted confidence levels for identification in environmental reporting is discussed. Illustrative examples of OMPs found in environmental samples are presented to highlight the potential of IMS-HRMS and to demonstrate the additional value of CCS data in various screening strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c05713DOI Listing
December 2020

Travelling Wave Ion Mobility-Derived Collision Cross Section for Mycotoxins: Investigating Interlaboratory and Interplatform Reproducibility.

J Agric Food Chem 2020 Sep 10;68(39):10937-10943. Epub 2020 Sep 10.

Department of Food and Drug, University of Parma, Viale Delle Scienze 17/A, I-43124 Parma, Italy.

Parent and modified mycotoxin analysis remains a challenge because of their chemical diversity, the presence of isomeric forms, and the lack of analytical standards. The creation and application of a collision cross section (CCS) database for mycotoxins may bring new opportunities to overcome these analytical challenges. However, it is still an open question whether common CCS databases can be used independently from the instrument type and ion mobility mass spectrometry (IM-MS) technologies, which utilize different methodologies for determining the gas-phase mobility. Here, we demonstrated the reproducibility of CCS measurements for mycotoxins in an interlaboratory study (average RSD 0.14% ± 0.079) and across different traveling wave IM-MS (TWIMS) systems commercially available (ΔCCS% < 2). The separation in the drift time dimension of critical pairs of isomers for modified mycotoxins was also achieved. In addition, the comparison of measured and predicted CCS values, including regulated and emerging mycotoxins, was addressed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c04498DOI Listing
September 2020

First nation-wide estimation of tobacco consumption in Spain using wastewater-based epidemiology.

Sci Total Environ 2020 Nov 20;741:140384. Epub 2020 Jun 20.

Department of Analytical Chemistry, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:

Wastewater-based epidemiology (WBE) has become a very useful tool to monitor a population's drug consumption or exposure to environmental and food contaminants. In this work, WBE has been applied to estimate tobacco consumption in seven Spanish regions. To this end, 24 h composite wastewater samples were taken daily for one week in 17 wastewater treatment plants, covering altogether a population of ca. 6 million inhabitants. The samples were treated by enzymatic deconjugation and the wastewater content of two human-specific nicotine metabolites (namely, cotinine and trans-3'-hydroxycotinine) was measured to estimate the daily consumption of nicotine. The population-weighted average nicotine consumption in the seven analyzed regions was 2.2 g/(day∙1000 inh.), without any daily pattern. This average estimated nicotine consumption value agreed with the value derived from official tobacco sales data. Differences in consumption among the seven studied regions were found, being Galicia, the region with the lowest rate, and the Basque Country and Catalonia those with the highest rates. However, no conclusive correlation was found between those values and the prevalence data taken from two different national surveys, nor sociodemographic and health data. This study demonstrates that this tool can complement other indicators in order to accurately assess tobacco consumption rates at regional and national levels and provides the most extensive application of the approach in the Spanish territory.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.140384DOI Listing
November 2020

Spatio-temporal assessment of illicit drug use at large scale: evidence from 7 years of international wastewater monitoring.

Addiction 2020 01 23;115(1):109-120. Epub 2019 Oct 23.

Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi, Czech Republic.

Background And Aims: Wastewater-based epidemiology is an additional indicator of drug use that is gaining reliability to complement the current established panel of indicators. The aims of this study were to: (i) assess spatial and temporal trends of population-normalized mass loads of benzoylecgonine, amphetamine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in raw wastewater over 7 years (2011-17); (ii) address overall drug use by estimating the average number of combined doses consumed per day in each city; and (iii) compare these with existing prevalence and seizure data.

Design: Analysis of daily raw wastewater composite samples collected over 1 week per year from 2011 to 2017.

Setting And Participants: Catchment areas of 143 wastewater treatment plants in 120 cities in 37 countries.

Measurements: Parent substances (amphetamine, methamphetamine and MDMA) and the metabolites of cocaine (benzoylecgonine) and of Δ -tetrahydrocannabinol (11-nor-9-carboxy-Δ -tetrahydrocannabinol) were measured in wastewater using liquid chromatography-tandem mass spectrometry. Daily mass loads (mg/day) were normalized to catchment population (mg/1000 people/day) and converted to the number of combined doses consumed per day. Spatial differences were assessed world-wide, and temporal trends were discerned at European level by comparing 2011-13 drug loads versus 2014-17 loads.

Findings: Benzoylecgonine was the stimulant metabolite detected at higher loads in southern and western Europe, and amphetamine, MDMA and methamphetamine in East and North-Central Europe. In other continents, methamphetamine showed the highest levels in the United States and Australia and benzoylecgonine in South America. During the reporting period, benzoylecgonine loads increased in general across Europe, amphetamine and methamphetamine levels fluctuated and MDMA underwent an intermittent upsurge.

Conclusions: The analysis of wastewater to quantify drug loads provides near real-time drug use estimates that globally correspond to prevalence and seizure data.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/add.14767DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6973045PMC
January 2020

Flexible high resolution-mass spectrometry approach for screening new psychoactive substances in urban wastewater.

Sci Total Environ 2019 Nov 26;689:679-690. Epub 2019 Jun 26.

Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Department of Environmental Health Sciences, Via Giuseppe La Masa 19, 20156 Milan, Italy.

The number of new psychoactive substances (NPS) on the recreational drug market has increased rapidly in the last years, creating serious challenges for public health agencies and law enforcement authorities. Epidemiological surveys and forensic analyses to monitor the consumption of these substances face some limitations for investigating their use on a large scale in a shifting market. The aim of this work was to develop a comprehensive and flexible screening approach for assessing the presence of NPS in urban wastewater by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Almost 200 substances were selected as "priority NPS" among those most frequently and recently reported by the Early Warning Systems (EWS) of different agencies and were included in the screening. Wastewater samples were collected from several cities all over Europe in 2016 and 2017, extracted using different solid-phase cartridges and analysed by LC-HRMS. The screening workflow comprised three successive analytical steps and compounds were identified and confirmed following specific criteria from the current guidelines. Thirteen NPS were identified at different confidence levels by using analytical standards or information from libraries and literature, and about half of them were phenethylamines. As far as we know, this is the first time that four of them (i.e. 3,4-dimethoxy-α-pyrrolidinovalerophenone, para-methoxyamphetamine, 2-phenethylamine and α-methyltryptamine) have been found in urban wastewater. The proposed screening approach was successfully applied in the largest NPS European wastewater monitoring, providing an innovative and easily adapted procedure for investigating NPS. In the light of current challenges and specific future research issues, this approach may complement epidemiological information and help in establishing measures for public health protection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.06.336DOI Listing
November 2019

Simultaneous determination of new psychoactive substances and illicit drugs in sewage: Potential of micro-liquid chromatography tandem mass spectrometry in wastewater-based epidemiology.

J Chromatogr A 2019 Sep 30;1602:300-309. Epub 2019 May 30.

Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat S/N, E-12071 Castelló, Spain. Electronic address:

Wastewater-based epidemiology (WBE) can give valuable light on the extent and actual use of new psychoactive substances (NPS). In this work, a fully validated methodology for the simultaneous determination of illicit drugs and NPS in wastewater by solid-phase extraction followed by UHPLC-MS/MS has been developed. The small sample volume (5 mL) required for analysis is of high interest, especially when performing large sampling campaigns involving many locations of different geographical origin, as it has been performed in the past. The method was applied to wastewater samples from different European locations and permitted the simultaneous monitoring of conventional drugs and NPS. Cocaine, amphetamine, MDMA, methamphetamine and ketamine were found in all wastewater samples, and several NPS (dipentylone, butylone, mephedrone, methedrone and methylone) were observed in some of the samples monitored. It is noteworthy that dipentylone was detected in wastewater for the very first time. Furthermore, a detailed comparison of micro liquid chromatography (μLC) and UHPLC, both coupled to tandem mass spectrometry, in terms of sensitivity and reproducibility has been made for the first time in the application field of WBE. An average increase factor of 14 (mass normalized data) was observed in sensitivity for μLC-MS/MS. The overall method performance was also compared (un-normalized data), and an average increase sensitivity factor of 4.5 was observed for μLC-MS/MS. However, large deviations in retention time (up to 0.4 min) affected the reproducibility and robustness of the μLC-MS/MS method when it was applied to wastewater analysis. Although in this work μLC-MS/MS was strongly influenced by the amount of matrix loaded in the separation device, its enhanced sensitivity and promotion of green chemistry (faster analysis time and less solvent consumption) allow to expect improved future applications, especially when analytes are present at very low concentrations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2019.05.051DOI Listing
September 2019

Investigating the appearance of new psychoactive substances in South Australia using wastewater and forensic data.

Drug Test Anal 2019 Feb 12;11(2):250-256. Epub 2018 Sep 12.

School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001, Australia.

New psychoactive substances (NPS) have increased in use and popularity worldwide. Wastewater analysis has been successfully applied to evaluate illicit drugs use within a population. However, for NPS, such an approach may be limited due to low doses of NPS combined with their ever-changing composition and usage. The dynamic nature of the NPS market means use may be opportunistic, infrequent, and with few users. Hence, the use of complementary information sources is recommended to improve the knowledge on NPS consumption. The aim of this study was to investigate the changing landscape of NPS use on a community scale by combining wastewater analysis and forensic toxicology. Forensic analysis provided specific information on NPS prevalence in post-mortem blood samples in Adelaide, South Australia over five years, while wastewater analysis showed community use over the same period. A qualitative liquid chromatography--high resolution mass spectrometry method was initially used to screen the wastewater samples. A total of 24 NPS were found: 6 in wastewater only, 13 in forensic post-mortem toxicology samples only, and 5 in both. As these results showed the presence of NPS, a targeted method was subsequently employed to quantify levels of these NPS in wastewater. Temporal trends were found in wastewater with distinct tendencies for synthetic cathinones visible over the period studied.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dta.2484DOI Listing
February 2019

[Wastewater-based epidemiology: applications towards the estimation of drugs of abuse consumption and public health in general. The Spanish network ESAR-Net].

Rev Esp Salud Publica 2018 Aug 20;92. Epub 2018 Aug 20.

Departamento de Química Analítica, Nutrición e Bromatoloxía, IIAA. Instituto de Investigacións e Análises Alimentarias. Universidade de Santiago de Compostela. Santiago de Compostela. España.

This manuscript introduces Wastewater-Based Epidemiology (WBE) and its potential in the assessment of diverse aspects related to public health. This methodology can provide data in a relatively short temporal and local scale (typically dialy-weekly at the municipal level) on consumption patterns of illicit drugs (e.g. cocaine or cannabis), licit substances of abuse (e.g. alcohol) by measuring their consumption biomarkers (i.e. the original unmetabolized substance or some of its metabolite) in wastewater. Besides discussing the fundaments, advantages and shortcomings of WBE, it reviews some of the main precedents at international level and most remarkable activities that have been taken place in this field in Spain. Finally, the Spanish Network of Wastewater-Based Epidemiology (ESAR-Net) as is presented. ESAR-Net is an Excellence Network that sums up the efforts of the most relevant Spanish researchers in the field of WBE, aiming to investigate future perspectives of this methodology and its impact on Public Health competences in Spain.
View Article and Find Full Text PDF

Download full-text PDF

Source
August 2018

Development of a Retention Time Interpolation scale (RTi) for liquid chromatography coupled to mass spectrometry in both positive and negative ionization modes.

J Chromatogr A 2018 Sep 6;1568:101-107. Epub 2018 Jul 6.

Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain. Electronic address:

The accuracy and sensitivity of high resolution mass spectrometry (HRMS) enables the identification of candidate compounds with the use of mass spectrometric databases among other tools. However, retention time (RT) data in identification workflows has been sparingly used since it could be strongly affected by matrix or chromatographic performance. Retention Time Interpolation scaling (RTi) strategies can provide a more robust and valuable information than RT, gaining more confidence in the identification of candidate compounds in comparison to an analytical standard. Up to our knowledge, no RTi has been developed for LC-HRMS systems providing information when acquiring in either positive or negative ionization modes. In this work, an RTi strategy was developed by means of the use of 16 isotopically labelled reference standards, which can be spiked into a real sample without resulting in possible false positives or negatives. For testing the RTi performance, a mixture of several reference standards, emulating suspect analytes, were used. RTi values for these compounds were calculated both in solvent and spiked in a real matrix to assess the effect of either chromatographic parameters or matrix in different scenarios. It has been demonstrated that the variation of injection volume, chromatographic gradient and initial percentage of organic solvent injected does not considerably affect RTi calculation. Column aging and solid support of the stationary phase of the column, however, showed strong effects on the elution of several test compounds. Yet, RTi permitted the correction of elution shifts of most compounds. Furthermore, RTi was tested in 47 different matrices from food, biological, animal feeding and environmental origin. The application of RTi in both positive and negative ionization modes showed in general satisfactory results for most matrices studied. The RTi developed can be used in future LC-HRMS screening analysis giving an additional parameter, which facilitates tedious processing tasks and gain more confidence in the identification of (non)-suspect analytes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2018.07.030DOI Listing
September 2018

Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis.

Anal Chem 2017 06 7;89(12):6583-6589. Epub 2017 Jun 7.

Research Institute for Pesticides and Water, University Jaume I , Avda. Sos Baynat s/n, E-12071 Castellón, Spain.

The use of collision cross-section (CCS) values obtained by ion mobility high-resolution mass spectrometry has added a third dimension (alongside retention time and exact mass) to aid in the identification of compounds. However, its utility is limited by the number of experimental CCS values currently available. This work demonstrates the potential of artificial neural networks (ANNs) for the prediction of CCS values of pesticides. The predictor, based on eight software-chosen molecular descriptors, was optimized using CCS values of 205 small molecules and validated using a set of 131 pesticides. The relative error was within 6% for 95% of all CCS values for protonated molecules, resulting in a median relative error less than 2%. In order to demonstrate the potential of CCS prediction, the strategy was applied to spinach samples. It notably improved the confidence in the tentative identification of suspect and nontarget pesticides.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b00741DOI Listing
June 2017