Publications by authors named "Alain van Mil"

26 Publications

  • Page 1 of 1

Controlled delivery of gold nanoparticle-coupled miRNA therapeutics an injectable self-healing hydrogel.

Nanoscale 2021 Nov 24. Epub 2021 Nov 24.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge 02142, MA, USA.

Differential expression of microRNAs (miRNAs) plays a role in many diseases, including cancer and cardiovascular diseases. Potentially, miRNAs could be targeted with miRNA-therapeutics. Sustained delivery of these therapeutics remains challenging. This study couples miR-mimics to PEG-peptide gold nanoparticles (AuNP) and loads these AuNP-miRNAs in an injectable, shear thinning, self-assembling polymer nanoparticle (PNP) hydrogel drug delivery platform to improve delivery. Spherical AuNPs coated with fluorescently labelled miR-214 are loaded into an HPMC-PEG-b-PLA PNP hydrogel. Release of AuNP/miRNAs is quantified, AuNP-miR-214 functionality is shown in HEK293 cells, and AuNP-miRNAs are tracked in a 3D bioprinted human model of calcific aortic valve disease (CAVD). Lastly, biodistribution of PNP-AuNP-miR-67 is assessed after subcutaneous injection in C57BL/6 mice. AuNP-miRNA release from the PNP hydrogel demonstrates a linear pattern over 5 days up to 20%. AuNP-miR-214 transfection in HEK293 results in 33% decrease of Luciferase reporter activity. In the CAVD model, AuNP-miR-214 are tracked into the cytoplasm of human aortic valve interstitial cells. Lastly, 11 days after subcutaneous injection, AuNP-miR-67 predominantly clears the liver and kidneys, and fluorescence levels are again comparable to control animals. Thus, the PNP-AuNP-miRNA drug delivery platform provides linear release of functional miRNAs and has potential for applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1nr04973aDOI Listing
November 2021

A Roadmap to Cardiac Tissue-Engineered Construct Preservation: Insights from Cells, Tissues, and Organs.

Adv Mater 2021 Jul 28;33(27):e2008517. Epub 2021 May 28.

Department of Cardiology, Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.

Worldwide, over 26 million patients suffer from heart failure (HF). One strategy aspiring to prevent or even to reverse HF is based on the transplantation of cardiac tissue-engineered (cTE) constructs. These patient-specific constructs aim to closely resemble the native myocardium and, upon implantation on the diseased tissue, support and restore cardiac function, thereby preventing the development of HF. However, cTE constructs off-the-shelf availability in the clinical arena critically depends on the development of efficient preservation methodologies. Short- and long-term preservation of cTE constructs would enable transportation and direct availability. Herein, currently available methods, from normothermic- to hypothermic- to cryopreservation, for the preservation of cardiomyocytes, whole-heart, and regenerative materials are reviewed. A theoretical foundation and recommendations for future research on developing cTE construct specific preservation methods are provided. Current research suggests that vitrification can be a promising procedure to ensure long-term cryopreservation of cTE constructs, despite the need of high doses of cytotoxic cryoprotective agents. Instead, short-term cTE construct preservation can be achieved at normothermic or hypothermic temperatures by administration of protective additives. With further tuning of these promising methods, it is anticipated that cTE construct therapy can be brought one step closer to the patient.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202008517DOI Listing
July 2021

miR-132/212 Impairs Cardiomyocytes Contractility in the Failing Heart by Suppressing SERCA2a.

Front Cardiovasc Med 2021 19;8:592362. Epub 2021 Mar 19.

Experimental Cardiology Laboratory, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.

Compromised cardiac function is a hallmark for heart failure, mostly appearing as decreased contractile capacity due to dysregulated calcium handling. Unfortunately, the underlying mechanism causing impaired calcium handling is still not fully understood. Previously the miR-132/212 family was identified as a regulator of cardiac function in the failing mouse heart, and pharmaceutically inhibition of miR-132 is beneficial for heart failure. In this study, we further investigated the molecular mechanisms of miR-132/212 in modulating cardiomyocyte contractility in the context of the pathological progression of heart failure. We found that upregulated miR-132/212 expressions in all examined hypertrophic heart failure mice models. The overexpression of miR-132/212 prolongs calcium decay in isolated neonatal rat cardiomyocytes, whereas cardiomyocytes isolated from miR-132/212 KO mice display enhanced contractility in comparison to wild type controls. In response to chronic pressure-overload, miR-132/212 KO mice exhibited a blunted deterioration of cardiac function. Using a combination of biochemical approaches and assays, we confirmed that miR-132/212 regulates SERCA2a by targeting the 3'-end untranslated region of SERCA2a. Additionally, we also confirmed PTEN as a direct target of miR-132/212 and potentially participates in the cardiac response to miR132/212. In end-stage heart failure patients, miR-132/212 is upregulated and correlates with reduced SERCA2a expression. The up-regulation of miR-132/212 in heart failure impairs cardiac contractile function by targeting SERCA2a, suggesting that pharmaceutical inhibition of miR-132/212 might be a promising therapeutic approach to promote cardiac function in heart failure patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcvm.2021.592362DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017124PMC
March 2021

Genome-wide association analysis in dilated cardiomyopathy reveals two new players in systolic heart failure on chromosomes 3p25.1 and 22q11.23.

Eur Heart J 2021 05;42(20):2000-2011

Université de Paris, INSERM, UMR-S970, Integrative Epidemiology of cardiovascular disease, Paris, France.

Aims: Our objective was to better understand the genetic bases of dilated cardiomyopathy (DCM), a leading cause of systolic heart failure.

Methods And Results: We conducted the largest genome-wide association study performed so far in DCM, with 2719 cases and 4440 controls in the discovery population. We identified and replicated two new DCM-associated loci on chromosome 3p25.1 [lead single-nucleotide polymorphism (SNP) rs62232870, P = 8.7 × 10-11 and 7.7 × 10-4 in the discovery and replication steps, respectively] and chromosome 22q11.23 (lead SNP rs7284877, P = 3.3 × 10-8 and 1.4 × 10-3 in the discovery and replication steps, respectively), while confirming two previously identified DCM loci on chromosomes 10 and 1, BAG3 and HSPB7. A genetic risk score constructed from the number of risk alleles at these four DCM loci revealed a 3-fold increased risk of DCM for individuals with 8 risk alleles compared to individuals with 5 risk alleles (median of the referral population). In silico annotation and functional 4C-sequencing analyses on iPSC-derived cardiomyocytes identify SLC6A6 as the most likely DCM gene at the 3p25.1 locus. This gene encodes a taurine transporter whose involvement in myocardial dysfunction and DCM is supported by numerous observations in humans and animals. At the 22q11.23 locus, in silico and data mining annotations, and to a lesser extent functional analysis, strongly suggest SMARCB1 as the candidate culprit gene.

Conclusion: This study provides a better understanding of the genetic architecture of DCM and sheds light on novel biological pathways underlying heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/eurheartj/ehab030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139853PMC
May 2021

Cardiac circadian rhythms in time and space: The future is in 4D.

Curr Opin Pharmacol 2021 04 15;57:49-59. Epub 2020 Dec 15.

Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA. Electronic address:

The circadian clock synchronizes the body into 24-h cycles, thereby anticipating variations in tissue-specific diurnal tasks, such as response to increased cardiac metabolic demand during the active period of the day. As a result, blood pressure, heart rate, cardiac output, and occurrence of fatal cardiovascular events fluctuate in a diurnal manner. The heart contains different cell types that make up and reside in an environment of biochemical, mechanical, and topographical signaling. Cardiac architecture is essential for proper heart development as well as for maintenance of cell homeostasis and tissue repair. In this review, we describe the possibilities of studying circadian rhythmicity in the heart by using advanced in vitro systems that mimic the native cardiac 3D microenvironment which can be tuned in time and space. Harnessing the knowledge that originates from those in vitro models could significantly improve innovative cardiac modeling and regenerative strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.coph.2020.11.006DOI Listing
April 2021

Wnt Activation and Reduced Cell-Cell Contact Synergistically Induce Massive Expansion of Functional Human iPSC-Derived Cardiomyocytes.

Cell Stem Cell 2020 07;27(1):50-63.e5

DeVos Cardiovascular Research Program of Spectrum Health and Van Andel Research Institute, 100 Michigan Street NE, Grand Rapids, MI 49503, USA; Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA.

Modulating signaling pathways including Wnt and Hippo can induce cardiomyocyte proliferation in vivo. Applying these signaling modulators to human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro can expand CMs modestly (<5-fold). Here, we demonstrate massive expansion of hiPSC-CMs in vitro (i.e., 100- to 250-fold) by glycogen synthase kinase-3β (GSK-3β) inhibition using CHIR99021 and concurrent removal of cell-cell contact. We show that GSK-3β inhibition suppresses CM maturation, while contact removal prevents CMs from cell cycle exit. Remarkably, contact removal enabled 10 to 25 times greater expansion beyond GSK-3β inhibition alone. Mechanistically, persistent CM proliferation required both LEF/TCF activity and AKT phosphorylation but was independent from yes-associated protein (YAP) signaling. Engineered heart tissues from expanded hiPSC-CMs showed comparable contractility to those from unexpanded hiPSC-CMs, demonstrating uncompromised cellular functionality after expansion. In summary, we uncovered a molecular interplay that enables massive hiPSC-CM expansion for large-scale drug screening and tissue engineering applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2020.06.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334437PMC
July 2020

Fiber Scaffold Patterning for Mending Hearts: 3D Organization Bringing the Next Step.

Adv Healthc Mater 2020 01 11;9(1):e1900775. Epub 2019 Oct 11.

Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands.

Heart failure (HF) is a leading cause of death worldwide. The most common conditions that lead to HF are coronary artery disease, myocardial infarction, valve disorders, high blood pressure, and cardiomyopathy. Due to the limited regenerative capacity of the heart, the only curative therapy currently available is heart transplantation. Therefore, there is a great need for the development of novel regenerative strategies to repair the injured myocardium, replace damaged valves, and treat occluded coronary arteries. Recent advances in manufacturing technologies have resulted in the precise fabrication of 3D fiber scaffolds with high architectural control that can support and guide new tissue growth, opening exciting new avenues for repair of the human heart. This review discusses the recent advancements in the novel research field of fiber patterning manufacturing technologies for cardiac tissue engineering (cTE) and to what extent these technologies could meet the requirements of the highly organized and structured cardiac tissues. Additionally, future directions of these novel fiber patterning technologies, designs, and applicability to advance cTE are presented.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201900775DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116178PMC
January 2020

Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion.

Proc Natl Acad Sci U S A 2019 08 24;116(32):16105-16110. Epub 2019 Jul 24.

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, The Netherlands;

Membrane transporters and receptors are responsible for balancing nutrient and metabolite levels to aid body homeostasis. Here, we report that proximal tubule cells in kidneys sense elevated endogenous, gut microbiome-derived, metabolite levels through EGF receptors and downstream signaling to induce their secretion by up-regulating the organic anion transporter-1 (OAT1). Remote metabolite sensing and signaling was observed in kidneys from healthy volunteers and rats in vivo, leading to induced OAT1 expression and increased removal of indoxyl sulfate, a prototypical microbiome-derived metabolite and uremic toxin. Using 2D and 3D human proximal tubule cell models, we show that indoxyl sulfate induces OAT1 via AhR and EGFR signaling, controlled by miR-223. Concomitantly produced reactive oxygen species (ROS) control OAT1 activity and are balanced by the glutathione pathway, as confirmed by cellular metabolomic profiling. Collectively, we demonstrate remote metabolite sensing and signaling as an effective OAT1 regulation mechanism to maintain plasma metabolite levels by controlling their secretion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1821809116DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689987PMC
August 2019

Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential.

Cardiovasc Res 2018 12;114(14):1828-1842

Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands.

In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvy208DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6887927PMC
December 2018

MMISH: Multicolor microRNA hybridization for paraffin embedded samples.

Biotechnol Rep (Amst) 2018 Jun 1;18:e00255. Epub 2018 May 1.

Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.

To understand and assess the roles of miRNAs, visualization of the expression patterns of specific miRNAs is needed at the cellular level in a wide variety of different tissue types. Although miRNA hybridization techniques have been greatly improved in recent years, they remain difficult to routinely perform due to the complexity of the procedure. In addition, as it is crucial to define which tissues or cells are expressing a particular miRNA in order to elucidate the biological function of the miRNA, incorporation of additional stainings for different cellular markers is necessary. Here, we describe a robust and flexible multicolor miRNA hybridization (MMISH) technique for paraffin embedded sections. We show that the miRNA protocol is sensitive and highly specific and can successfully be combined with both immunohistochemical and immunofluorescent stainings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.btre.2018.e00255DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5989586PMC
June 2018

Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics.

Nanomaterials (Basel) 2018 May 3;8(5). Epub 2018 May 3.

Center for Interdisciplinary Cardiovascular Sciences, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nano8050296DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977310PMC
May 2018

In vitro 3D model and miRNA drug delivery to target calcific aortic valve disease.

Clin Sci (Lond) 2017 02;131(3):181-195

Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, U.S.A.

Calcific aortic valve disease (CAVD) is the most prevalent valvular heart disease in the Western population, claiming 17000 deaths per year in the United States and affecting 25% of people older than 65 years of age. Contrary to traditional belief, CAVD is not a passive, degenerative disease but rather a dynamic disease, where initial cellular changes in the valve leaflets progress into fibrotic lesions that induce valve thickening and calcification. Advanced thickening and calcification impair valve function and lead to aortic stenosis (AS). Without intervention, progressive ventricular hypertrophy ensues, which ultimately results in heart failure and death. Currently, aortic valve replacement (AVR), surgical or transcatheter, is the only effective therapy to treat CAVD. However, these costly interventions are often delayed until the late stages of the disease. Nonetheless, 275000 are performed per year worldwide, and this is expected to triple by 2050. Given the current landscape, next-generation therapies for CAVD are needed to improve patient outcome and quality of life. Here, we first provide a background on the aortic valve (AV) and the pathobiology of CAVD as well as highlight current directions and future outlook on the development of functional 3D models of CAVD in vitro We then consider an often-overlooked aspect contributing to CAVD: miRNA (mis)regulation. Therapeutics could potentially normalize miRNA levels in the early stages of the disease and may slow its progression or even reverse calcification. We close with a discussion of strategies that would enable the use of miRNA as a therapeutic for CAVD. This focuses on an overview of controlled delivery technologies for nucleic acid therapeutics to the valve or other target tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1042/CS20160378DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5459552PMC
February 2017

MicroRNA 214 Is a Potential Regulator of Thyroid Hormone Levels in the Mouse Heart Following Myocardial Infarction, by Targeting the Thyroid-Hormone-Inactivating Enzyme Deiodinase Type III.

Front Endocrinol (Lausanne) 2016 9;7:22. Epub 2016 Mar 9.

Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center , Amsterdam , Netherlands.

Cardiac thyroid-hormone signaling is a critical determinant of cellular metabolism and function in health and disease. A local hypothyroid condition within the failing heart in rodents has been associated with the re-expression of the fetally expressed thyroid-hormone-inactivating enzyme deiodinase type III (Dio3). While this enzyme emerges as a common denominator in the development of heart failure, the mechanism underlying its regulation remains largely unclear. In the present study, we investigated the involvement of microRNAs (miRNAs) in the regulation of Dio3 mRNA expression in the remodeling left ventricle (LV) of the mouse heart following myocardial infarction (MI). In silico analysis indicated that of the miRNAs that are differentially expressed in the post-MI heart, miR-214 has the highest potential to target Dio3 mRNA. In accordance, a luciferase reporter assay, including the full-length 3'UTR of mouse Dio3 mRNA, showed a 30% suppression of luciferase activity by miR-214. In the post-MI mouse heart, miR-214 and Dio3 protein were shown to be co-expressed in cardiomyocytes, while time-course analysis revealed that Dio3 mRNA expression precedes miR-214 expression in the post-MI LV. This suggests that a Dio3-induced decrease of T3 levels is involved in the induction of miR-214, which was supported by the finding that cardiac miR-214 expression is down regulated by T3 in mice. In vitro analysis of human DIO3 mRNA furthermore showed that miR-214 is able to suppress both mRNA and protein expression. Dio3 mRNA is a target of miR-214 and the Dio3-dependent stimulation of miR-214 expression in post-MI cardiomyocytes supports the involvement of a negative feedback mechanism regulating Dio3 expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fendo.2016.00022DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783388PMC
March 2016

MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway.

J Cell Mol Med 2015 Aug 6;19(8):1994-2005. Epub 2015 May 6.

Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.

Arteriogenesis is a complicated process induced by increased local shear-and radial wall-stress, leading to an increase in arterial diameter. This process is enhanced by growth factors secreted by both inflammatory and endothelial cells in response to physical stress. Although therapeutic promotion of arteriogenesis is of great interest for ischaemic diseases, little is known about the modulation of the signalling cascades via microRNAs. We observed that miR-132/212 expression was significantly upregulated after occlusion of the femoral artery. miR-132/212 knockout (KO) mice display a slower perfusion recovery after hind-limb ischaemia compared to wildtype (WT) mice. Immunohistochemical analysis demonstrates a clear trend towards smaller collateral arteries in KO mice. Although Ex vivo aortic ring assays score similar number of branches in miR-132/212 KO mice compared to WT, it can be stimulated with exogenous miR-132, a dominant member of the miR-132/212 family. Moreover, in in vitro pericyte-endothelial co-culture cell assays, overexpression of miR-132 and mir-212 in endothelial cells results in enhanced vascularization, as shown by an increase in tubular structures and junctions. Our results suggested that miR-132/212 may exert their effects by enhancing the Ras-Mitogen-activated protein kinases MAPK signalling pathway through direct inhibition of Rasa1, and Spred1. The miR-132/212 cluster promotes arteriogenesis by modulating Ras-MAPK signalling via direct targeting of its inhibitors Rasa1 and Spred1.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/jcmm.12586DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549050PMC
August 2015

MicroRNA Therapeutics for Cardiac Regeneration.

Mini Rev Med Chem 2015 ;15(6):441-51

Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, room G02.523, 3584 CX Utrecht, the Netherlands.

It is estimated that a typical myocardial infarction results in the loss of approximately one billion functional cardiomyocytes, which are replaced by a non-contractile fibrous scar, eventually leading to heart failure. The currently available surgical, drug, and device-based therapies cannot reverse the loss of functional myocardium, which is the fundamental cause of the problem. As a result of this lack of an available medical solution, heart failure has evolved into a global epidemic. Therefore, the development of regenerative therapeutic strategies to halt the progression of ischemic heart disease to advanced heart failure has become one of the most urgent medical needs of this century. This review first addresses the extremely limited endogenous regenerative capacity of the mammalian heart, and the benefits and limitations of stem cell-based therapies for cardiac repair. Then it discusses the known roles of microRNAs after cardiac injury and the possibility of employing microRNAs to enhance cardiac regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389557515666150324123913DOI Listing
July 2015

Inhibition of miR-25 improves cardiac contractility in the failing heart.

Nature 2014 Apr 12;508(7497):531-5. Epub 2014 Mar 12.

Department of Bioengineering, University of California, San Diego, and the Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA.

Heart failure is characterized by a debilitating decline in cardiac function, and recent clinical trial results indicate that improving the contractility of heart muscle cells by boosting intracellular calcium handling might be an effective therapy. MicroRNAs (miRNAs) are dysregulated in heart failure but whether they control contractility or constitute therapeutic targets remains speculative. Using high-throughput functional screening of the human microRNAome, here we identify miRNAs that suppress intracellular calcium handling in heart muscle by interacting with messenger RNA encoding the sarcoplasmic reticulum calcium uptake pump SERCA2a (also known as ATP2A2). Of 875 miRNAs tested, miR-25 potently delayed calcium uptake kinetics in cardiomyocytes in vitro and was upregulated in heart failure, both in mice and humans. Whereas adeno-associated virus 9 (AAV9)-mediated overexpression of miR-25 in vivo resulted in a significant loss of contractile function, injection of an antisense oligonucleotide (antagomiR) against miR-25 markedly halted established heart failure in a mouse model, improving cardiac function and survival relative to a control antagomiR oligonucleotide. These data reveal that increased expression of endogenous miR-25 contributes to declining cardiac function during heart failure and suggest that it might be targeted therapeutically to restore function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature13073DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4131725PMC
April 2014

Post-transcriptional regulation of α-1-antichymotrypsin by microRNA-137 in chronic heart failure and mechanical support.

Circ Heart Fail 2013 Jul 2;6(4):853-61. Epub 2013 May 2.

Department of Cardiology, University Medical Center, Utrecht, The Netherlands.

Background: Better understanding of the molecular mechanisms of remodeling has become a major objective of heart failure (HF) research to stop or reverse its progression. Left ventricular assist devices (LVADs) are being used in patients with HF, leading to partial reverse remodeling. In the present study, proteomics identified significant changes in α-1-antichymotrypsin (ACT) levels during LVAD support. Moreover, the potential role of ACT in reverse remodeling was studied in detail.

Methods And Results: Expression of ACT mRNA (quantitative-polymerase chain reaction) decreased significantly in post-LVAD myocardial tissue compared with pre-LVAD tissue (n=15; P<0.01). Immunohistochemistry revealed that ACT expression and localization changed during LVAD support. Circulating ACT levels were elevated in HF patients (n=18) as compared with healthy controls (n=6; P=0.001) and normalized by 6 months of LVAD support. Because increasing evidence implicates that microRNAs (miRs) are involved in myocardial disease processes, we also investigated whether ACT is post-transcriptionally regulated by miRs. Bioinformatics analysis pointed miR-137 as a potential regulator of ACT. The miR-137 expression is inversely correlated with ACT mRNA in myocardial tissue. Luciferase activity assays confirmed ACT as a direct target for miR-137, and in situ hybridization indicated that ACT and miR-137 were mainly localized in cardiomyocytes and stromal cells.

Conclusions: High ACT plasma levels in HF normalized during LVAD support, which coincides with decreased ACT mRNA in heart tissue, whereas miR-137 levels increased. MiR-137 directly targeted ACT, thereby indicating that ACT and miR-137 play a role in the pathophysiology of HF and reverse remodeling during mechanical support.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000255DOI Listing
July 2013

MicroRNA-1 enhances the angiogenic differentiation of human cardiomyocyte progenitor cells.

J Mol Med (Berl) 2013 Aug 27;91(8):1001-12. Epub 2013 Apr 27.

Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, room G02.523, 3584 CX, Utrecht, The Netherlands.

Instigated by the discovery of adult cardiac progenitor cells, cell replacement therapy has become a promising option for myocardial repair in the past decade. We have previously shown that human-derived cardiomyocyte progenitor cells (hCMPCs) can differentiate into cardiomyocyte-, endothelial-, and smooth muscle-like cells in vitro, and in vivo after transplantation in a mouse model of myocardial infarction, resulting in preservation of cardiac function. However, to allow successful repopulation of the injured myocardium, it is of key importance to restore myocardial perfusion by the formation of new vasculature. Several studies have shown that microRNAs regulate vascular differentiation of different stem/progenitor cells. Here, we show that miR-1 is upregulated in hCMPCs during angiogenic differentiation. Upregulation of miR-1 enhanced the formation of vascular tubes on Matrigel and within a collagen matrix, and also increased hCMPC motility, as shown by planar and transwell migration assays. By western blot, qRT-PCR and luciferase reporter assays, miR-1 was found to directly target and inhibit the expression of sprouty-related EVH1 domain-containing protein 1 (Spred1). Knocking down Spred1 phenocopies the functional effect seen for miR-1 upregulation. Using a systems biology approach, we found that in hCMPCs, miR-1 is proposed to control a network of genes predominantly involved in angiogenesis-related processes, including the Spred1 pathway. Our data shows that by upregulation of miR-1, the angiogenic differentiation of hCMPCs can be enhanced, which may be used as a new therapeutic approach to improve the efficiency of cell-based therapy for cardiac regeneration by enhancing the formation of new vasculature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00109-013-1017-1DOI Listing
August 2013

Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs.

EMBO Mol Med 2012 Nov 1;4(11):1176-85. Epub 2012 Oct 1.

Department of Cardiology, University Medical Center Utrecht, The Netherlands.

Previous studies investigating the role of circulating microRNAs in acute coronary syndrome (ACS) were based on small patient numbers, performed no comparison with established markers of cardiac injury and did not have appropriate controls. We determined the potential diagnostic value of circulating microRNAs as novel early biomarkers in 332 suspected ACS patients on presentation to the emergency department (ED) in a prospective single-centre study including cardiac miRNAs (miR-1, -208a and -499), miR-21 and miR-146a. Levels of all miRs studied were significantly increased in 106 patients diagnosed with ACS, even in patients with initially negative high-sensitive (hs) troponin or symptom onset <3 h. MiR-1, miR-499 and miR-21 significantly increased the diagnostic value in all suspected ACS patients when added to hs-troponin T (AUC 0.90). These three miRs were strong predictors of ACS independent of clinical co-variates including patient history and cardiovascular risk factors. Interestingly, the combination of these three miRs resulted in a significantly higher AUC of 0.94 than hs-troponin T (0.89). Circulating microRNAs hold great potential as novel early biomarkers for the management of suspected ACS patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/emmm.201201749DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494874PMC
November 2012

MiR-155 inhibits cell migration of human cardiomyocyte progenitor cells (hCMPCs) via targeting of MMP-16.

J Cell Mol Med 2012 Oct;16(10):2379-86

Department of Endocrinology, Provincial Hospital affiliated to Shandong University, Jinan, China.

Undesired cell migration after targeted cell transplantation potentially limits beneficial effects for cardiac regeneration. MicroRNAs are known to be involved in several cellular processes, including cell migration. Here, we attempt to reduce human cardiomyocyte progenitor cell (hCMPC) migration via increasing microRNA-155 (miR-155) levels, and investigate the underlying mechanism. Human cardiomyocyte progenitor cells (hCMPCs) were transfected with pre-miR-155, anti-miR-155 or control-miR (ctrl-miR), followed by scratch- and transwell-assays. These functional assays displayed that miR-155 over-expression efficiently inhibited cell migration by 38 ± 3.6% and 59 ± 3.7% respectively. Conditioned medium from miR-155 transfected cells was collected and zymography analysis showed a significant decrease in MMP-2 and MMP-9 activities. The predicted 3'-UTR of MMP-16, an activator of MMP-2 and -9, was cloned into the pMIR-REPORT vector and luciferase assays were performed. Introduction of miR-155 significantly reduced luciferase activity which could be abolished by cotransfection with anti-miR-155 or target site mutagenesis. By using MMP-16 siRNA to reduce MMP-16 levels or by using an MMP-16 blocking antibody, hCMPC migration could be blocked as well. By directly targeting MMP-16, miR-155 efficiently inhibits cell migration via a reduction in MMP-2 and -9 activities. Our study shows that miR-155 might be used to improve local retention of hCMPCs after intramyocardial delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1582-4934.2012.01551.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823431PMC
October 2012

MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release.

Cardiovasc Res 2012 Mar 6;93(4):655-65. Epub 2012 Jan 6.

Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, Room G02.523, 3584 CX Utrecht, the Netherlands.

Aims: Angiogenesis is a critical component of many pathological conditions in adult tissues and is essential for embryonic development. MicroRNAs are indispensable for normal vascular development, but their exact role in regulating angiogenesis remains unresolved. Previously, we have observed that miR-214 is differentially expressed in compensatory arteriogenesis. Here, we investigated the potential role of miR-214 in the process of angiogenesis.

Methods And Results: miR-214 is expressed in all major vascular cell types, and modulation of miR-214 levels in endothelial cells significantly affected tubular sprouting. In vivo silencing of miR-214 enhanced the formation of a perfused vascular network in implanted Matrigel plugs and retinal developmental angiogenesis in mice. miR-214 directly targets Quaking, a protein critical for vascular development. Quaking knockdown reduced pro-angiogenic growth factor expression and inhibited endothelial cell sprouting similar to miR-214 overexpression. In accordance, silencing of miR-214 increased the secretion of pro-angiogenic growth factors, including vascular endothelial growth factor, and enhanced the pro-angiogenic action of the endothelial cell-derived conditioned medium, whereas miR-214 overexpression had the opposite effect.

Conclusion: Here, we report a novel role for miR-214 in regulating angiogenesis and identify Quaking as a direct target of miR-214. The anti-angiogenic effect of miR-214 is mediated through the down-regulation of Quaking and pro-angiogenic growth factor expression. This study presents miR-214 as a potential important target for pro- or anti-angiogenic therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvs003DOI Listing
March 2012

MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1.

J Cell Mol Med 2011 Jul 9;15(7):1474-82. Epub 2010 Jun 9.

Department of Endocrinology, Provincial Hospital/Shandong University, Jinan, China.

To improve regeneration of the injured myocardium, cardiomyocyte progenitor cells (CMPCs) have been put forward as a potential cell source for transplantation therapy. Although cell transplantation therapy displayed promising results, many issues need to be addressed before fully appreciating their impact. One of the hurdles is poor graft-cell survival upon injection, thereby limiting potential beneficial effects. Here, we attempt to improve CMPCs survival by increasing microRNA-155 (miR-155) levels, potentially to improve engraftment upon transplantation. Using quantitative PCR, we observed a 4-fold increase of miR-155 when CMPCs were exposed to hydrogen-peroxide stimulation. Flow cytometric analysis of cell viability, apoptosis and necrosis showed that necrosis is the main cause of cell death. Overexpressing miR-155 in CMPCs revealed that miR-155 attenuated necrotic cell death by 40 ± 2.3%via targeting receptor interacting protein 1 (RIP1). In addition, inhibiting RIP1, either by pre-incubating the cells with a RIP1 specific inhibitor, Necrostatin-1 or siRNA mediated knockdown, reduced necrosis by 38 ± 2.5% and 33 ± 1.9%, respectively. Interestingly, analysing gene expression using a PCR-array showed that increased miR-155 levels did not change cell survival and apoptotic related gene expression. By targeting RIP1, miR-155 repressed necrotic cell death of CMPCs, independent of activation of Akt pro-survival pathway. MiR-155 provides the opportunity to block necrosis, a conventionally thought non-regulated process, and might be a potential novel approach to improve cell engraftment for cell therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1582-4934.2010.01104.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823192PMC
July 2011

MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells.

Arterioscler Thromb Vasc Biol 2010 Apr 15;30(4):859-68. Epub 2010 Jan 15.

University Medical Center Utrecht, Department of Cardiology, Division of Heart and Lungs, Heidelberglaan 100, Utrecht, The Netherlands.

Objective: To improve regeneration of the injured myocardium, it is necessary to enhance the intrinsic capacity of the heart to regenerate itself and/or replace the damaged tissue by cell transplantation. Cardiomyocyte progenitor cells (CMPCs) are a promising cell population, easily expanded and efficiently differentiated into beating cardiomyocytes. Recently, several studies have demonstrated that microRNAs (miRNAs) are important for stem cell maintenance and differentiation via translational repression. We hypothesize that miRNAs are also involved in proliferation/differentiation of the human CMPCs in vitro.

Methods And Results: Human fetal CMPCs were isolated, cultured, and efficiently differentiated into beating cardiomyocytes. miRNA expression profiling demonstrated that muscle-specific miR-1 and miR-499 were highly upregulated in differentiated cells. Transient transfection of miR-1 and -499 in CMPC reduced proliferation rate by 25% and 15%, respectively, and enhanced differentiation into cardiomyocytes in human CMPCs and embryonic stem cells, likely via the repression of histone deacetylase 4 or Sox6. Histone deacetylase 4 and Sox6 protein levels were reduced, and small interference RNA (siRNA)-mediated knockdown of Sox6 strongly induced myogenic differentiation.

Conclusions: miRNAs regulate the proliferation of human CMPC and their differentiation into cardiomyocytes. By modulating miR-1 and -499 expression levels, human CMPC function can be altered and differentiation directed, thereby enhancing cardiomyogenic differentiation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.109.197434DOI Listing
April 2010

PTEN and TRP53 independently suppress Nanog expression in spermatogonial stem cells.

Stem Cells Dev 2010 Jul;19(7):979-88

Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University , Utrecht, The Netherlands.

Mammalian spermatogonial stem cells are a special type of adult stem cells because they can contribute to the next generation. Knockout studies have indicated a role for TRP53 and PTEN in insulating male germ cells from pluripotency, but the mechanism by which this is achieved is largely unknown. To get more insight in these processes, an RNAi experiment was performed on the mouse spermatogonial stem cell line GSDG1. Lipofectaminemediated transfection of siRNAs directed against Trp53 and Pten resulted in decreased expression levels as determined by quantitative RT-PCR and immunoblotting. The effects of knockdown were examined by determining the expression levels of genes that are involved in reprogramming and pluripotency of cells, specifically Nanog, Eras, c-Myc, Klf4, Oct4, and Sox2. Additionally, the effects of TRP53 or PTEN knockdown on Plzf and Ddx4 expression were measured, which are highly expressed in spermatogonial stem cells and differentiating male germ cells, respectively. The main finding of this study is that knockdown of Trp53 and Pten independently resulted in significantly higher expression levels of the pluripotency-associated gene Nanog, and we hypothesize that TRP53 and PTEN mediated repression is important for the insulation of male germ cells from pluripotency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2009.0276DOI Listing
July 2010

The potential of modulating small RNA activity in vivo.

Mini Rev Med Chem 2009 Feb;9(2):235-48

University Medical Center Utrecht, Department of Cardiology, DH&L, Heidelberglaan 100, room G02.523, 3584 CX Utrecht, The Nederlands.

Small RNAs have shown to be ubiquitous, useful, post-transcriptional gene silencers in a diverse array of living organisms. As a result of homologous sequence interactions, these small RNAs repress gene expression. Through a process called RNA interference (RNAi), double strand RNA molecules are processed by an enzyme called Dicer, which cleaves RNA duplexes into 21-23 base pair oligomers. Depending on their end-point functions, these oligomers are named differently, the two most common being small interfering RNAs (siRNAs) and microRNAs (miRNAs). These small RNAs are the effector molecules for inducing RNAi, leading to post-transcriptional gene silencing by guiding the RNAi-induced silencing complex (RISC) to the target mRNA. By exploiting these small RNAs, it is possible to regulate the expression of genes related to human disease. The knockdown of such target genes can be achieved by transfecting cells with synthetically engineered small RNAs or small RNA expressing vectors. Within recent years, studies have also shown the important role of miRNAs in different diseases. By using several chemically engineered anti-miRNA oligonucleotides, disease related miRNAs can be specifically and effectively silenced. Since RNAi has developed into an everyday method for in vitro knockdown of any target gene of interest, the next step is to further explore its potential in vivo and the unique opportunities it holds for the development of novel therapeutic strategies. This review explores the various applications of small RNA technology in in vivo studies, and its potential for silencing genes associated with various human diseases. We describe the latest development in small RNA technology for both gene knockdown, and the inhibition of translational silencing in animal studies. A variety of small RNA formulations and modifications will be reviewed for their improvement on stability and half-life, their safety and off-target effects, and their efficiency and specificity of gene silencing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/138955709787316029DOI Listing
February 2009
-->