Publications by authors named "Ai Hang"

5 Publications

  • Page 1 of 1

The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel κ agonist and μ partial agonist, in mice.

Psychopharmacology (Berl) 2016 06 26;233(12):2411-8. Epub 2016 Apr 26.

Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai, 201203, China.

Rationale: Opioid receptors are implicated in the regulation of motivation and emotion. However, animal studies show that activation of κ opioid receptor produces contrasting mood-altering effects in models of anxiety-like and depressive-like behaviors, and consequently, the role of κ receptor in mood control remains unsettled. The effect of κ/μ opioid combination in emotion regulation was unexplored.

Objectives: The aim of the study was to investigate the effects of (-)-3-N-ethylaminothiazolo [5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a novel κ agonist and μ partial agonist, in regulating emotional responses.

Methods: The emotional responses of ATPM-ET were detected in the elevated plus maze (EPM), open field test (OFT), forced swim test (FST), and tail suspension test (TST). Selective κ antagonist nor-binaltorphimine (nor-BNI) and μ antagonist β-funaltrexamine (β-FNA) were applied to determine the type of receptor involved. The conditioned place aversion model was used to evaluate the effects on aversive emotion.

Results: In the EPM and OFT, ATPM-ET (1 and 2 mg/kg, s.c.) significantly increased the time spent in the open arm and in the central area, respectively. In the FST and TST, ATPM-ET (0.5 and 1 mg/kg, s.c.) significantly reduced the duration of immobility. These effects were prevented by nor-BNI (10 mg/kg, i.p., -24 h), but not by β-FNA (10 and20 mg/kg, i.p., -24 h) pretreatment. At the dose of 2 mg/kg, ATPM-ET did not induce conditioned place aversion.

Conclusions: ATPM-ET, at doses from 0.5 to 2 mg/kg, produced anxiolytic- and antidepressant-like effects without inducing aversive emotion. These effects were more closely mediated by activation of κ receptor than μ receptor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-016-4292-zDOI Listing
June 2016

κ Opioid receptor activation in different brain regions differentially modulates anxiety-related behaviors in mice.

Neuropharmacology 2016 11 20;110(Pt A):92-101. Epub 2016 Apr 20.

Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Science, Shanghai 201203, China. Electronic address:

κ Opioid receptor system is widely implicated in the regulation of emotion. However, the findings about the role on anxiety in rodents are highly controversial, since both anxiogenic- and anxiolytic-like effects have been reported with κ opioid receptor activation. The mechanism and the underlying neuroanatomical substrates are unexplored. In the present study, we first investigated the effects of κ agonist U50,488H on anxiety-related behaviors over a wide range of doses, and we found that U50,488H produced dual effects in anxiety, with low dose being anxiogenic and high dose being anxiolytic. To assess the potential neuroanatomical substrates, we used phosphorylation of extracellular signal-related kinase1/2 (pERK1/2) to map the underlying neural circuits. We found that the anxiogenic effect of U50,488H was paralleled by an increase of pERK1/2 in the nucleus accumbens, whereas the anxiolytic effect was paralleled by an increase of pERK1/2 in the lateral septal nucleus. We then examined the behavioral consequences with locally microinjection of U50,488H, and we found that microinjection of U50,488H into the nucleus accumbens exerted anxiogenic-like effects, whereas microinjection of U50,488H into the lateral septal nucleus. Both effects can be abolished by κ antagonist nor-BNI pretreatment. To the best of our knowledge, the present work firstly provides the neuroanatomical sites that mediating the dual anxiogenic- and anxiolytic-like effects of U50,488H in mice. This study may help to explain current controversial role of κ receptor activation in anxiety-related behaviors in rodents, and may open new perspectives in the areas of anxiety disorders and κ receptor function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2016.04.022DOI Listing
November 2016

Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence.

Behav Brain Res 2015 Sep 3;291:334-341. Epub 2015 Jun 3.

Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai 201203, China. Electronic address:

The association between morphine withdrawal and depressive-like symptoms is well documented, however, the role of dynorphin/κ opioid receptor system and the underlying neural substrates have not been fully understood. In the present study, we found that four weeks morphine abstinence after a chronic escalating morphine regimen significantly induced depressive-like behaviors in mice. Prodynorphin mRNA and protein levels were increased in the nucleus accumbens (NAc) after four weeks of morphine withdrawal. Local injection of κ opioid receptor antagonist nor-Binaltorphimine (norBNI) in the NAc significantly blocked the expression of depressive-like behaviors without influencing general locomotor activity. Thus, the present study extends previous findings by showing that prolonged morphine withdrawal-induced depressive-like behaviors are regulated by dynorphin/κ opioid receptor system, and shed light on the κ opioid receptor antagonists as potential therapeutic agents for the treatment of depressive-like behaviors induced by opiate withdrawal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2015.05.053DOI Listing
September 2015

The role of the dynorphin/κ opioid receptor system in anxiety.

Acta Pharmacol Sin 2015 Jul 18;36(7):783-90. Epub 2015 May 18.

Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica and Collaborative Innovation Center for Brain Science, Chinese Academy of Sciences, Shanghai 201203, China.

Anxiety disorders are the most common and prevalent forms of psychiatric disease, although the biological basis of anxiety is not well understood. The dynorphin/κ opioid receptor system is widely distributed in the central nervous system and has been shown to play a critical role in modulating mood and emotional behaviors. In the present review, we summarize current literature relating to the role played by the dynorphin/κ opioid receptor system in anxiety and κ opioid receptor antagonists as potential therapeutic agents for the treatment of anxiety disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/aps.2015.32DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648115PMC
July 2015

Pharmacological characterization and therapeutic potential for the treatment of opioid abuse with ATPM-ET, an N-ethyl substituted aminothiazolomorphinan with κ agonist and μ agonist/antagonist activity.

Eur J Pharmacol 2014 Oct 3;740:455-63. Epub 2014 Jul 3.

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China. Electronic address:

We previously reported that the κ agonists with mixed μ activity could attenuate heroin self-administration with less potential to develop tolerance. The present study further investigated the effects of (-)-3-N-Ethylamino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride (ATPM-ET), a κ agonist and μ agonist/antagonist, on the acquisition and reinstatement of morphine-induced conditioned place preference (CPP), heroin self-administration and heroin-primed reinstatement of drug-seeking behavior. We found that ATPM-ET produced a longer duration of potent antinociceptive effects with less side effect of sedation. More importantly, ATPM-ET attenuated the acquisition of morphine-induced CPP, without affecting the reinstatement of morphine CPP. Furthermore, ATPM-ET significantly inhibited heroin self-administration and the reinstatement of heroin primed drug-seeking behavior. Taken together, ATPM-ET, a novel κ agonist and μ agonist/antagonist may have utility for the treatment of drug dependence.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2014.06.045DOI Listing
October 2014