Publications by authors named "Ahmed Adel Ali Youssef"

9 Publications

  • Page 1 of 1

Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements.

Cells 2022 Aug 6;11(15). Epub 2022 Aug 6.

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.

Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients' quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells11152439DOI Listing
August 2022

Fabrication of a shell-core fixed-dose combination tablet using fused deposition modeling 3D printing.

Eur J Pharm Biopharm 2022 Aug 11;177:211-223. Epub 2022 Jul 11.

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA. Electronic address:

Fixed-dose combinations (FDCs) achieve optimal goals for treatment with minimal side effects, decreased administration of large number of tablets, thus, greater convenience, and improved patient compliance. However, conventional FDCs do not have a guaranteed place in the future of patient-centered drug development because of the difficulty in achieving dose titration of each drug for individualized specific health needs and desired therapeutic outcomes. In the current study, FDCs of two antihypertensive drugs were fabricated with two distinct compartments using fused deposition modeling three-dimensional printing (FDM-3DP). Atorvastatin calcium and Amlodipine besylate loaded filaments were prepared by hot-melt extrusion. Shell-core FDC tablets were designed to have different infills for individualized dosing. Differential scanning calorimetry and powder X-ray diffraction revealed that both drugs were transformed into amorphous forms within the polymeric carriers. The fabricated tablets met the United States Pharmacopeia acceptance criteria for friability, content uniformity, and dissolution testing. The fabricated tablets were stable at room temperature with respect to drug content and thermal behavior over six months. This dynamic dosage form provides flexibility in dose titration and maintains the advantages of FDCs, thus achieving optimal therapeutic outcomes in different healthcare facilities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2022.07.003DOI Listing
August 2022

A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation.

Int J Pharm 2022 Jun 23;624:121951. Epub 2022 Jun 23.

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA. Electronic address:

Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2022.121951DOI Listing
June 2022

Design of Topical Moxifloxacin Mucoadhesive Nanoemulsion for the Management of Ocular Bacterial Infections.

Pharmaceutics 2022 Jun 12;14(6). Epub 2022 Jun 12.

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.

Ocular bacterial infections can lead to serious visual disability without proper treatment. Moxifloxacin (MOX) has been approved by the US Food and Drug Administration as a monotherapy for ocular bacterial infections and is available commercially as an ophthalmic solution (0.5% /). However, precorneal retention, drainage, and low bioavailability remain the foremost challenges associated with current commercial eyedrops. With this study, we aimed to design a MOX-loaded nanoemulsion (NE; MOX-NE) with mucoadhesive agents (MOX-NEM) to sustain MOX release, as well as to overcome the potential drawbacks of the current commercial ophthalmic formulation. MOX-NE and MOX-NEM formulations were prepared by hot homogenization coupled with probe sonication technique and subsequently characterized. The lead formulations were further evaluated for in vitro release, ex vivo transcorneal permeation, sterilization, and antimicrobial efficacy studies. Commercial MOX ophthalmic solution was used as a control. The lead formulations showed the desired physicochemical properties and viscosity. All lead formulations showed sustained release profiles a period of more than 12 h. Filtered and autoclaved lead formulations were stable for one month (the last time point tested) under refrigeration and at room temperature. Ex vivo transcorneal permeation studies revealed a 2.1-fold improvement in MOX permeation of the lead MOX-NE formulation compared with Vigamox eyedrops. However, MOX-NEM formulations showed similar flux and permeability coefficients to those of Vigamox eyedrops. The lead formulations showed similar in vitro antibacterial activity as the commercial eyedrops and crude drug solution. Therefore, MOX-NE and MOX-NEM formulations could serve as effective delivery vehicles for MOX and could improve treatment outcomes in different ocular bacterial infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/pharmaceutics14061246DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228176PMC
June 2022

Dual Drug Loaded Lipid Nanocarrier Formulations for Topical Ocular Applications.

Int J Nanomedicine 2022 18;17:2283-2299. Epub 2022 May 18.

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA.

Introduction: Untreated ocular infections can damage the unique fine structures of the eye with possible visual impairments and blindness. Ciprofloxacin (CIP) ophthalmic solution is prescribed as first-line therapy in ocular bacterial infections. Natamycin (NT) ophthalmic suspension is one of the progenitors in ocular antifungal therapy. Nanostructured lipid carriers (NLCs) have been widely examined for ocular penetration enhancement and distribution to deeper ocular tissues. The objective of the current study was to prepare NLCs loaded with a combination of CIP and NT (CIP-NT-NLCs) and embed them in an in-situ gelling system (CIP-NT-NLCs-IG). This novel formulation will target the co-delivery of CIP and NT for the treatment of mixed ocular infections or as empirical treatment in case of limited access to healthcare diagnostic services.

Methods: CIP-NT-NLC and CIP-NT-NLC-IG formulations were evaluated based on physicochemical characteristics, in vitro release, and ex vivo transcorneal permeation studies and compared against commercial CIP and NT ophthalmic eye drops.

Results And Discussion: NLCs formulation (0.1% CIP and 0.3% NT) showed particle size, polydispersity index, and zeta potential of 196.2 ± 1.2 nm, 0.43 ± 0.06, and -28.1 ± 1.4 mV, respectively. Moreover, CIP-NT-NLCs showed entrapment efficiency of 80.9 ± 2.9 and 98.7 ± 1.9% for CIP and NT, respectively. CIP-NT-NLCs-IGformulation with 0.2% w/v gellan gum demonstrated the most favorable viscoelastic characteristics for ocular application. CIP-NT-NLCs and CIP-NT-NLCs-IG formulations exhibited a sustained release pattern for both drugs over 24 h. Moreover, CIP-NT-NLCs and CIP-NT-NLC-IG formulations showed 4.0- and 2.2-folds, and 5.0- and 2.5-folds enhancement in ex vivo transcorneal permeability of CIP and NT, respectively, compared to the control formulations.

Conclusion: The results suggest that this dual nanoparticulate-based in-situ gelling drug delivery system can serve as a promising topical delivery platform for the treatment of ocular infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/IJN.S360740DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124492PMC
May 2022

Cyclodextrin Complexed Lipid Nanoparticles of Irbesartan for Oral Applications: Design, Development, and In Vitro Characterization.

Molecules 2021 Dec 13;26(24). Epub 2021 Dec 13.

Department of Pharmaceutics, Vaagdevi Pharmacy College, Warangal 506005, Telangana, India.

Irbesartan (IR) is an angiotensin II receptor antagonist drug with antihypertensive activity. IR bioavailability is limited due to poor solubility and first-pass metabolism. The current investigation aimed to design, develop, and characterize the cyclodextrin(s) (CD) complexed IR (IR-CD) loaded solid lipid nanoparticles (IR-CD-SLNs) for enhanced solubility, sustained release behavior, and subsequently improved bioavailability through oral administration. Based on phase solubility studies, solid complexes were prepared by the coacervation followed by lyophilization method and characterized for drug content, inclusion efficiency, solubility, and in vitro dissolution. IR-CD inclusion complexes demonstrated enhancement of solubility and dissolution rate of IR. However, the dissolution efficiency was significantly increased with hydroxypropyl-βCD (HP-βCD) inclusion complex than beta-CD (βCD). SLNs were obtained by hot homogenization coupled with the ultrasonication method with IR/HP-βCD inclusion complex loaded into Dynasan 112 and glycerol monostearate (GMS). SLNs were evaluated for physicochemical characteristics, in vitro release, differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and physical stability at room temperature for two months. The optimized SLNs formulation showed particle size, polydispersity index, zeta potential, assay, and entrapment efficiency of 257.6 ± 5.1 nm, 0.21 ± 0.03, -30.5 ± 4.1 mV, 99.8 ± 2.5, and 93.7 ± 2.5%, respectively. IR-CD-SLN and IR-SLN dispersions showed sustained release of IR compared to the IR-CD inclusion complexes. DSC results complimented PXRD results by the absence of IR endothermic peak. Optimized IR-CD complex, IR-SLN, and IR-CD-SLN formulations were stable for two months at room temperature. Thus, the current IR oral formulation may exhibit improved oral bioavailability and prolonged antihypertensive activity, which may improve therapeutic outcomes in the treatment of hypertension and heart failure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules26247538DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8704533PMC
December 2021

Design of Topical Ocular Ciprofloxacin Nanoemulsion for the Management of Bacterial Keratitis.

Pharmaceuticals (Basel) 2021 Mar 3;14(3). Epub 2021 Mar 3.

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA.

Bacterial keratitis (BK) is a critical ocular infection that can lead to serious visual disability. Ciprofloxacin (CIP), moxifloxacin (MOX), and levofloxacin (LFX) have been accepted as monotherapies by the US Food and Drug Administration for BK treatment. CIP is available commercially at 0.3% / concentration as an ophthalmic solution and as an ointment for ocular delivery. Because of solubility issues at physiological pH, CIP precipitation can occur at the corneal surface post instillation of the solution dosage form. Consequently, the ocular bioavailability of CIP is reduced. The ointment dosage form is associated with side effects such as blurred vision, itching, redness, eye discomfort, and eye dryness. This study aimed to design a CIP loaded nanoemulsion (NE; CIP-NE) to facilitate drug penetration into the corneal layers for improved therapeutic outcomes as well as to overcome the drawbacks of the current commercial ophthalmic formulations. CIP-NE formulations were prepared by hot homogenization and ultrasonication, using oleic acid (CIP-O-NE) and Labrafac Lipophile WL 1349 (CIP-L-NE) as the oily phase, and Tween 80 and Poloxamer 188 as surfactants. Optimized CIP-NE was further evaluated with respect to in vitro release, ex vivo transcorneal permeation, and moist heat sterilization process, using commercial CIP ophthalmic solution as a control. Optimized CIP-O-NE formulation showed a globule size, polydispersity index, and zeta potential of 121.6 ± 1.5 nm, 0.13 ± 0.01, and -35.1 ± 2.1 mV, respectively, with 100.1 ± 2.0% drug content and was spherical in shape. In vitro release and ex vivo transcorneal permeation studies exhibited sustained release and a 2.1-fold permeation enhancement, respectively, compared with commercial CIP ophthalmic solution. Autoclaved CIP-O-NE formulation was found to be stable for one month (last time-point tested) at refrigerated and room temperature. Therefore, CIP-NE formulation could serve as an effective delivery system for CIP and could improve treatment outcomes in BK.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ph14030210DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7998883PMC
March 2021

Colloidal lipid nanodispersion enriched hydrogel of antifungal agent for management of fungal infections: Comparative in-vitro, ex-vivo and in-vivo evaluation for oral and topical application.

Chem Phys Lipids 2020 11 5;233:104981. Epub 2020 Oct 5.

Department of Nanotechnology, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, Telangana State, India.

Ketoconazole (KZ) is broad spectrum antifungal drug, used for the treatment of fungal infections. KZ's clinical topical use has been associated with some adverse effects in healthy adults particularly local reactions, such as stinging, severe irritation, and pruritus. However, bioavailability of KZ after oral administration is low from tablets due to its low aqueous solubility. The objective of this investigation was development and characterization of KZ-containing solid lipid nanoparticles (KZ-SLNs) and SLN-containing hydrogel (KZ-SLN-H) for oral and topical delivery of KZ. KZ-SLNs were prepared using homogenization-sonication method. Optimal KZ-SLN formulation was selected based on physicochemical and in-vitro release studies. Optimized KZ-SLN converted to KZ-SLN hydrogel (KZ-SLN-H) using gelling polymers and optimized with rheological and in-vitro studies. Further, optimized KZ-SLN and KZ-SLN-H formulations evaluated for crystallinity, morphology, stability, ex-vivo and in-vivo pharmacokinetic (PK) studies in rats, comparison with KZ suspension (KZ-S) and KZ-S hydrogel (KZ-SH). Optimized KZ-SLN formulation showed desirable characters. KZ-SLN and KZ-SLN-H formulations exhibited spherical shape, converted to amorphous, sustained release behaviour and enhanced permeability (p < 0.05). Moreover, both formulations were stable for three months at 4 °C and 25 °C. PK studies revealed 1.9 and 1.5-folds, 3.5 and 2.8-folds enhancement of bioavailability of optimized KZ-SLN and KZ-SLN-H formulations (p < 0.05) compared with KZ-S and KZ-SH formulations, respectively. Overall, SLN and SLN-H formulations could be considered as an efficient delivery vehicles for KZ through oral and topical administration for better control over topical and systemic fungal infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2020.104981DOI Listing
November 2020

Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: and skin permeation.

Drug Dev Ind Pharm 2020 Aug 7;46(8):1334-1344. Epub 2020 Jul 7.

Nanotechnology and Novel Drug Delivery Laboratory, Department of Pharmaceutics, University College of Pharmaceutical Sciences, Kakatiya University, Warangal, India.

The present investigation focused mainly on the development of aceclofenac (AF) loaded transfersomal gel (AF-TG) to minimize the frequency of oral dosing during the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. AF-loaded transfersomes (AF-TS) were prepared by using the film hydration method. The effect of drug loading, pH of hydration medium, edge activator (EA) and lipid concentration on the properties of the AF-TS were studied and optimized. Optimized AF-TS converted into AF-TG by the addition of carbopol 934. Morphology and compatibility studies of AF-TS were observed with scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). AT-TG formulation was evaluated further for skin permeation studies compared with marketed Hifenac 30 g gel. Optimized AF-TS showed vesicle size, PDI, and zeta potential of 111.1 ± 3.2 nm, 0.19 ± 0.02, and -29.6 ± 1.2 mV, respectively. Entrapment efficiency of 74.1 ± 1.8% with pH 5.8 phosphate buffer as a hydration medium and 17.1 ± 0.9 elasticity at 0.15%w/v EA and 1%w/v lipid concentration were observed. SEM and DSC studies revealed the spherical shape and no incompatibilities in the AF-TS formulation. The permeability of the AF from AF-TG was enhanced by 14-folds with similar rheological properties compared with marketed gel. Overall, TG containing AF was superior to marketed AF gel formulation for enhanced skin delivery. Therefore, TS and TG formulation could be considered as an alternative delivery approach for the enhanced transdermal application of AF.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2020.1788069DOI Listing
August 2020
-->