Publications by authors named "Ahmad Kamil Mohd Jaaffar"

2 Publications

  • Page 1 of 1

Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.

Phytopathology 2017 06 4;107(6):692-703. Epub 2017 Apr 4.

First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430.

Rhizoctonia solani anastomosis groups (AG)-8 and AG-2-1 and R. oryzae are ubiquitous in cereal-based cropping systems of the Columbia Plateau of the Inland Pacific Northwest and commonly infect wheat. AG-8 and R. oryzae, causal agents of Rhizoctonia root rot and bare patch, are most commonly found in fields in the low-precipitation zone, whereas R. solani AG-2-1 is much less virulent on wheat and is distributed in fields throughout the low-, intermediate-, and high-precipitation zones. Fluorescent Pseudomonas spp. that produce the antibiotic phenazine-1-carboxylic acid (PCA) also are abundant in the rhizosphere of crops grown in the low-precipitation zone but their broader geographic distribution and effect on populations of Rhizoctonia is unknown. To address these questions, we surveyed the distribution of PCA producers (Phz) in 59 fields in cereal-based cropping systems throughout the Columbia Plateau. Phz Pseudomonas spp. were detected in 37 of 59 samples and comprised from 0 to 12.5% of the total culturable heterotrophic aerobic rhizosphere bacteria. The frequency with which individual plants were colonized by Phz pseudomonads ranged from 0 to 100%. High and moderate colonization frequencies of Phz pseudomonads were associated with roots from fields located in the driest areas whereas only moderate and low colonization frequencies were associated with crops where higher annual precipitation occurs. Thus, the geographic distribution of Phz pseudomonads overlaps closely with the distribution of R. solani AG-8 but not with that of R. oryzae or R. solani AG-2-1. Moreover, linear regression analysis demonstrated a highly significant inverse relationship between annual precipitation and the frequency of rhizospheres colonized by Phz pseudomonads. Phz pseudomonads representative of the four major indigenous species (P. aridus, P. cerealis, P. orientalis, and P. synxantha) suppressed Rhizoctonia root rot of wheat when applied as seed treatments. In vitro, mean 50% effective dose values for isolates of AG-8 and AG-2-1 from fields with high and low frequencies of phenazine producers did not differ significantly, nor was there a correlation between virulence of an isolate and sensitivity to PCA, resulting in rejection of the hypothesis that tolerance in Rhizoctonia spp. to PCA develops in nature upon exposure to Phz pseudomonads.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-07-16-0257-RDOI Listing
June 2017

Molecular Characterization, Morphological Characteristics, Virulence, and Geographic Distribution of Rhizoctonia spp. in Washington State.

Phytopathology 2016 May 21;106(5):459-73. Epub 2016 Mar 21.

First and third authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and second, fourth, and fifth authors: U.S. Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430.

Rhizoctonia root rot and bare patch, caused by Rhizoctonia solani anastomosis group (AG)-8 and R. oryzae, are chronic and important yield-limiting diseases of wheat and barley in the Inland Pacific Northwest (PNW) of the United States. Major gaps remain in our understanding of the epidemiology of these diseases, in part because multiple Rhizoctonia AGs and species can be isolated from the same cereal roots from the field, contributing to the challenge of identifying the causal agents correctly. In this study, a collection totaling 498 isolates of Rhizoctonia was assembled from surveys conducted from 2000 to 2009, 2010, and 2011 over a wide range of cereal production fields throughout Washington State in the PNW. To determine the identity of the isolates, PCR with AG- or species-specific primers and/or DNA sequence analysis of the internal transcribed spacers was performed. R. solani AG-2-1, AG-8, AG-10, AG-3, AG-4, and AG-11 comprised 157 (32%), 70 (14%), 21 (4%), 20 (4%), 1 (0.2%), and 1 (0.2%), respectively, of the total isolates. AG-I-like binucleate Rhizoctonia sp. comprised 44 (9%) of the total; and 53 (11%), 80 (16%), and 51 (10%) were identified as R. oryzae genotypes I, II, and III, respectively. Isolates of AG-2-1, the dominant Rhizoctonia, occurred in all six agronomic zones defined by annual precipitation and temperature within the region sampled. Isolates of AG-8 also were cosmopolitan in their distribution but the frequency of isolation varied among years, and they were most abundant in zones of low and moderate precipitation. R. oryzae was cosmopolitan, and collectively the three genotypes comprised 37% of the isolates. Only isolates of R. solani AG-8 and R. oryzae genotypes II and III (but not genotype I) caused symptoms typically associated with Rhizoctonia root rot and bare patch of wheat. Isolates of AG-2-1 caused only mild root rot and AG-I-like binucleate isolates and members of groups AG-3, AG-4, and AG-11 showed only slight or no discoloration of the roots. However, all isolates of AG-2-1 caused severe damping-off of canola, resulting in 100% mortality. Isolates of Rhizoctonia AG-8, AG-2-1, AG-10, AG-I-like binucleate Rhizoctonia, and R. oryzae genotypes I, II, and III could be distinguished by colony morphology on potato dextrose agar, by PCR with specific primers, or by the type and severity of disease on wheat and canola seedlings, and results of these approaches correlated completely. Based on cultured isolates, we also identified the geographic distribution of all of these Rhizoctonia isolates in cereal-based production systems throughout Washington State.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-09-15-0208-RDOI Listing
May 2016