Publications by authors named "Adem Saglam"

3 Publications

  • Page 1 of 1

Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment.

Cell 2020 09 5;182(6):1419-1440.e23. Epub 2020 Aug 5.

Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany; German Center for Lung Research (DZL).

Coronavirus disease 2019 (COVID-19) is a mild to moderate respiratory tract infection, however, a subset of patients progress to severe disease and respiratory failure. The mechanism of protective immunity in mild forms and the pathogenesis of severe COVID-19 associated with increased neutrophil counts and dysregulated immune responses remain unclear. In a dual-center, two-cohort study, we combined single-cell RNA-sequencing and single-cell proteomics of whole-blood and peripheral-blood mononuclear cells to determine changes in immune cell composition and activation in mild versus severe COVID-19 (242 samples from 109 individuals) over time. HLA-DRCD11c inflammatory monocytes with an interferon-stimulated gene signature were elevated in mild COVID-19. Severe COVID-19 was marked by occurrence of neutrophil precursors, as evidence of emergency myelopoiesis, dysfunctional mature neutrophils, and HLA-DR monocytes. Our study provides detailed insights into the systemic immune response to SARS-CoV-2 infection and reveals profound alterations in the myeloid cell compartment associated with severe COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.08.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7405822PMC
September 2020

Cross-Modal Integration of Reward Value during Oculomotor Planning.

eNeuro 2020 Jan/Feb;7(1). Epub 2020 Feb 17.

Perception and Cognition Group, European Neuroscience Institute Goettingen-A Joint Initiative of the University Medical Center Goettingen and the Max-Planck-Society, Goettingen 37077, Germany

Reward value guides goal-directed behavior and modulates early sensory processing. Rewarding stimuli are often multisensory, but it is not known how reward value is combined across sensory modalities. Here we show that the integration of reward value critically depends on whether the distinct sensory inputs are perceived to emanate from the same multisensory object. We systematically manipulated the congruency in monetary reward values and the relative spatial positions of co-occurring auditory and visual stimuli that served as bimodal distractors during an oculomotor task performed by healthy human participants (male and female). The amount of interference induced by the distractors was used as an indicator of their perceptual salience. Our results across two experiments show that when reward value is linked to each modality separately, the value congruence between vision and audition determines the combined salience of the bimodal distractors. However, the reward value of vision wins over the value of audition if the two modalities are perceived to convey conflicting information regarding the spatial position of the bimodal distractors. These results show that in a task that highly relies on the processing of visual spatial information, the reward values from multiple sensory modalities are integrated with each other, each with their respective weights. This weighting depends on the strength of prior beliefs regarding a common source for incoming unisensory signals based on their congruency in reward value and perceived spatial alignment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1523/ENEURO.0381-19.2020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029185PMC
February 2020

Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases.

Front Immunol 2019 30;10:2035. Epub 2019 Aug 30.

Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), Bonn, Germany.

Human monocytes are divided in three major populations; classical (CD14CD16), non-classical (CD14CD16), and intermediate (CD14CD16). Each of these subsets is distinguished from each other by the expression of distinct surface markers and by their functions in homeostasis and disease. In this review, we discuss the most up-to-date phenotypic classification of human monocytes that has been greatly aided by the application of novel single-cell transcriptomic and mass cytometry technologies. Furthermore, we shed light on the role of these plastic immune cells in already recognized and emerging human chronic diseases, such as obesity, atherosclerosis, chronic obstructive pulmonary disease, lung fibrosis, lung cancer, and Alzheimer's disease. Our aim is to provide an insight into the contribution of human monocytes to the progression of these diseases and highlight their candidacy as potential therapeutic cell targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.02035DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6728754PMC
September 2020