Publications by authors named "Abraham Almatari"

2 Publications

  • Page 1 of 1

Eight Metagenome-Assembled Genomes Provide Evidence for Microbial Adaptation in 20,000- to 1,000,000-Year-Old Siberian Permafrost.

Appl Environ Microbiol 2021 09 10;87(19):e0097221. Epub 2021 Sep 10.

University of Tennessee, Knoxville, Tennessee, USA.

Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly cored permafrost from the Siberian Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as , , , and within bacteria and within archaea. MAGs from these taxa have been obtained previously from nonpermafrost environments and have been suggested to show adaptations to long-term energy starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had greater proportions in the Clusters of Orthologous Groups (COGs) categories of energy production and conversion and carbohydrate transport and metabolism than did their nonpermafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis, and cellulose degradation, which were less prevalent in nonpermafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high-ionic-strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA of high enough quality to assemble MAGs from microorganisms with adaptations to survive long-term freezing in this extreme environment. Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture-independent techniques can give a glimpse into how these microorganisms function under these extreme low-temperature and low-energy conditions. This will facilitate understanding how they will change with the environment. This study presents genomic data from this unique environment ∼20,000 to 1,000,000 years of age.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
September 2021

Insights into community of photosynthetic microorganisms from permafrost.

FEMS Microbiol Ecol 2020 11;96(12)

Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Institutskaya Street, Bldg. 2, Pushchino, Russia.

This work integrates cultivation studies of Siberian permafrost and analyses of metagenomes from different locations in the Arctic with the aim of obtaining insights into the community of photosynthetic microorganisms in perennially frozen deposits. Cyanobacteria and microalgae have been described in Arctic aquatic and surface soil environments, but their diversity and ability to withstand harsh conditions within the permafrost are still largely unknown. Community structure of photosynthetic organisms in permafrost sediments was explored using Arctic metagenomes available through the MG-RAST. Sequences affiliated with cyanobacteria represented from 0.25 to 3.03% of total sequences, followed by sequences affiliated with Streptophyta (algae and vascular plants) 0.01-0.45% and Chlorophyta (green algae) 0.01-0.1%. Enrichment and cultivation approaches revealed that cyanobacteria and green algae survive in permafrost and they could be revived during prolonged incubation at low light intensity. Among photosynthetic microorganisms isolated from permafrost, the filamentous Oscillatoria-like cyanobacteria and unicellular green algae of the genus Chlorella were dominant. Our findings suggest that permafrost cyanobacteria and green algae are expected to be effective members of the re-assembled community after permafrost thawing and soil collapse.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2020