Publications by authors named "Abdullah H Alomrani"

8 Publications

  • Page 1 of 1

Crosstalk of low density lipoprotein and liposome as a paradigm for targeting of 5-fluorouracil into hepatic cells: cytotoxicity and liver deposition.

Bioengineered 2021 Dec;12(1):914-926

Prince Naif for the Health Research Center, King Saud University, Riyadh, Saudi Arabia.

This study aimed to utilize cholesterol conjugation of 5-fluorouracil (5-FUC) and liposomal formulas to enhance the partitioning of 5-FU into low density lipoprotein (LDL) to target hepatocellular carcinoma (HCC). Thus, 5-FU and 5-FUCwere loaded into liposomes. Later, the direct loading and transfer of 5-FU, and 5-FUC from liposomes into LDL were attained. The preparations were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and cytotoxicity using the HepG2 cell line. Moreover, the drug deposition into the LDL and liver tissues was investigated. The present results revealed that liposomal preparations have a nanosize range (155 - 194 nm), negative zeta potential (- 0.82 to - 16 mV), entrapment efficiency of 69% for 5-FU, and 66% for 5-FUC. Moreover, LDL particles have a nanosize range (28-49 nm), negative zeta potential (- 17 to -27 mV), and the entrapment efficiency is 11% for 5-FU and 85% for 5-FUC. Furthermore, 5-FUC loaded liposomes displayed a sustained release profile (57%) at 24 h compared to fast release (92%) of 5-FU loaded liposomes. 5-FUC and liposomal formulas enhanced the transfer of 5-FUC into LDL compared to 5-FU. 5-FUC loaded liposomes and LDL have greater cytotoxicity against HepG2 cell lines compared to 5-FU and 5-FUC solutions. Moreover, the deposition of 5-FUC in LDL (26.87ng/mg) and liver tissues (534 ng/gm tissue) was significantly increased 5-FUC liposomes compared to 5-FU (11.7 ng/g tissue) liposomal formulation. In conclusion, 5-FUC is a promising strategy for hepatic targeting of 5-FU through LDL-mediated gateway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/21655979.2021.1896202DOI Listing
December 2021

Improved pharmacokinetic and biodistribution of 5-fluorouracil loaded biomimetic nanoerythrocytes decorated nanocarriers for liver cancer treatment.

Colloids Surf B Biointerfaces 2021 Jan 4;197:111380. Epub 2020 Oct 4.

Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Al-Azhar University Cairo, Egypt. Electronic address:

Nanoerythrocytes membrane (NEs) has recently been used to improve pharmacokinetics and biodistribution for successful drug therapy. NEs intended to enhance the drug targeting due to immune evasion and long circulation. In this work, NEs could serve as efficient 5- fluorouracil (5-FU) carriers to target liver cells. NEs decorated 5-FU-loaded chitosan coated-poly (lactide-co-glycolic acid) nanoparticles (5-FU-C-NPs-NEs), chitosomes (5-FU-C-LPs-NEs) and 5-FU-NEs were prepared by hypotonic lysis and extrusion procedures. Moreover, 5-FU loaded-chitosan coated 5-FU-NPs (5-FU-C-NPs) and chitosomes (5-FU-C-LPs) for the compared issues were prepared. They were characterized in terms of particle size, encapsulation efficiency (EE), membrane protein content, phosphatidylserine exposure, surface morphology, and in vitro release profiles. Also, their cytotoxic efficacy was determined. Furthermore, pharmacokinetics and biodistribution studies were investigated for optimized formulation. The results revealed that 5-FU-C-NPs-NEs have narrow particle size distribution, desirable EE%, and retained the erythrocyte membrane properties as confirmed by polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, it displayed a sustained release profile up to 72 h of 5-FU-C-NPs-NEs compared to other formulations. In comparison to 5-FU solution and 5-FU-C-NPs, 5-FU-C-NPs-NEs extended the drug release time in vivo with highly uptake by the liver. These results suggest that the 5-FU-C-NPs-NEs could be used to deliver 5-FU and enhance its targetability to liver cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.111380DOI Listing
January 2021

Chitosan-Coated Flexible Liposomes Magnify the Anticancer Activity and Bioavailability of Docetaxel: Impact on Composition.

Molecules 2019 Jan 11;24(2). Epub 2019 Jan 11.

Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia.

Flexible liposomes (FLs) were developed as promising nano-carriers for anticancer drugs. Coating them with chitosan (CS) could improve their drug delivery properties. The aim of this study was to investigate the physicochemical characteristics, pharmacokinetics behavior, and cytotoxic efficacy of docetaxel (DTX)-loaded CS-coated FLs (C-FLs). DTX-loaded FLs and C-FLs were produced via thin-film evaporation and electrostatic deposition methods, respectively. To explore their physicochemical characterization, the particle size, zeta potential, encapsulation efficiency (EE%), morphology, and DTX release profiles were determined. In addition, pharmacokinetic studies were performed, and cytotoxic effect was assessed using colon cancer cells (HT29). Various FLs, dependent on the type of surfactant, were formed with particle sizes in the nano-range, 137.6 ± 6.3 to 238.2 ± 14.2 nm, and an EE% of 59⁻94%. Moreover, the zeta potential shifted from a negative to a positive value for C-FL with increased particle size and EE%, and the in vitro sustained-release profiles of C-FL compared to those of FL were evident. The optimized C-FL containing sodium deoxycholate (NDC) and dicetyl phosphate (DP) elicited enhanced pharmacokinetic parameters and cytotoxic efficiency compared to those of the uncoated ones and Onkotaxel. In conclusion, this approach offers a promising solution for DTX delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules24020250DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6359228PMC
January 2019

Novel docetaxel chitosan-coated PLGA/PCL nanoparticles with magnified cytotoxicity and bioavailability.

Biomed Pharmacother 2018 Oct 24;106:1461-1468. Epub 2018 Jul 24.

Pharmaceutical Sciences Department, College of Pharmacy-3163, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.

In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.07.102DOI Listing
October 2018

Simvastatin-loaded nanostructured lipid carriers attenuate the atherogenic risk of erythrocytes in hyperlipidemic rats.

Eur J Pharm Sci 2017 Jan 7;96:62-71. Epub 2016 Sep 7.

Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt. Electronic address:

This study aimed to investigate the effect of simvastatin (SV) loaded nanostructured lipid carriers (SV loaded NLCs) on atherogenic index (AI), erythrocytes membrane lipid and antioxidant/pro-oxidant status in hyperlipidemic rats. SV loaded NLCs were successfully prepared with desired nano-particles size, spherical shape, high encapsulation efficiency (EE %) and sustained SV release. The results of biological studies revealed that administration of SV loaded NLCs to rats increased SV bioavailability compared to SV suspension. Intraperitoneal injection of tyloxapol as hyperlipidemic agent induces a significant increase of plasma AI, uric acid, lipid peroxidation and protein oxidation. While, plasma total antioxidant capacity and paraoxonase-1 activity were significantly decreased. Moreover, tyloxapol induced-hyperlipidemia increases erythrocyte's membrane cholesterol and deteriorates erythrocyte's antioxidant enzyme activity, GSH/GSSG ratio and NO level However, the propagation of erythrocyte's pro-oxidant activity and hemolysis was observed. On the contrast, the treatment of these rats with SV loaded NLCs improved the measured parameters compared to rats received SV suspension and hyperlipidemic rats. The predominant effect of SV loaded NLCs may be attributed to the enhancement of absorption, prolonged duration and improvement of bioavailability of SV. Accordingly, SV loaded NLCs showed advantageous effects on the blood lipid levels and atherogenic risk of erythrocytes in hyperlipidemic conditions compared to SV suspension.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2016.09.004DOI Listing
January 2017

Flexosomes for transdermal delivery of meloxicam: characterization and antiinflammatory activity.

Artif Cells Nanomed Biotechnol 2017 Mar 28;45(2):305-312. Epub 2016 Feb 28.

a Department of Pharmaceutics, College of Pharmacy , King Saud University , Riyadh , Saudi Arabia.

The study aims to investigate the impact of flexosomes (FLs) on transdermal delivery of meloxicam (MLX). FLs are composed of phospholipid, Tween 80, and ethanol which were prepared by film hydration method. The prepared FLs were characterized for particle size, zeta potential, and entrapment efficiency (EE). Ex vivo skin penetration studies were perfomed, and the best formulation was further evaluated using in vivo antiinflammatory activity test. FLs were in nano-size scale carring negative charge and observed high EE% and enhanced skin penetration of MLX compared to conventional liposomes (CLs). The best formula was FL4 which was composedof phospholipid (10%), Tween 80 (1.5%), and ethanol (40%). FL4 showed 143.4 nm vesicle size, 84% EE, and 31-fold ex vivo permeation enhancement through skin compared to CLs. The antiinflammatory activity of FL4 gel showed significant increase compared to control. This study observed the effectiveness of using FLs as carriers for transdermal delivery of MLX.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3109/21691401.2016.1147452DOI Listing
March 2017

Itraconazole-hydroxypropyl-β-cyclodextrin loaded deformable liposomes: in vitro skin penetration studies and antifungal efficacy using Candida albicans as model.

Colloids Surf B Biointerfaces 2014 Sep 2;121:74-81. Epub 2014 Jun 2.

Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt. Electronic address:

The study aimed to develop novel ITZ-loaded deformable liposomes (DL) in presence of hydroxypropyl-β-cyclodextrin (HPβCD) (DL-CD) to enhance antifungal activity. These formulations have been reported as conceivable vesicles to deliver drug molecules to the skin layers. The efficiency of the prepared systems was compared with conventional liposomes (CL) and ITZ solution. The developed liposomes were characterized for particle size, entrapment efficiency (EE %), deformability, stability, and morphology of the vesicles. In addition, ex vivo penetration and antifungal activity were evaluated. It was found that the presence of HPβCD played a significant role in reducing the vesicle size to nano range. The deformability study and TEM images revealed that membrane deformability of DL and DL-CD was much higher than that of CL. Moreover, DL-CD enhanced the amount of ITZ in SC and deeper skin layers compared to DL and CL. The antifungal activity of ITZ-loaded deformable liposomes remained intact compared to ITZ solution. It can be concluded that deformable liposomes in the presence of HPβCD may be a promising carrier for effective cutaneous delivery of ITZ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2014.05.030DOI Listing
September 2014

Novel sulpiride-loaded solid lipid nanoparticles with enhanced intestinal permeability.

Int J Nanomedicine 2014 19;9:129-44. Epub 2013 Dec 19.

Department of Pharmaceutical Sciences, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs, Riyadh, Saudi Arabia.

Background: Solid lipid nanoparticles (SLN), novel drug delivery carriers, can be utilized in enhancing both intestinal permeability and dissolution of poorly absorbed drugs. The aim of this work was to enhance the intestinal permeability of sulpiride by loading into SLN.

Methods: A unique ultrasonic melt-emulsification method with minimum stress conditions was used for the preparation of SLN. The mixture of the drug and the melted lipids was simply dispersed in an aqueous solution of a surfactant at a temperature that was 10°C higher than the melting points of the lipids using probe sonication, and was then simultaneously dispersed in cold water. Several formulation parameters were optimized, including the drug-to-lipid ratio, and the types of lipids and surfactants used. The produced SLN were evaluated for their particle size and shape, surface charge, entrapment efficiency, crystallinity of the drug and lipids, and the drug release profile. The rat everted sac intestine model was utilized to evaluate the change in intestinal permeability of sulpiride by loading into SLN.

Results: The method adopted allowed successful preparation of SLN with a monodispersed particle size of 147.8-298.8 nm. Both scanning electron microscopic and atomic force microscopic images showed uniform spherical particles and confirmed the sizes determined by the light scattering technique. Combination of triglycerides with stearic acid resulted in a marked increase in zeta potential, entrapment efficiency, and drug loading; however, the particle size was increased. The type of surfactant used was critical for particle size, charge, drug loading, and entrapment efficiency. Generally, the in vitro release profile demonstrated by all formulations showed the common biphasic mode with a varying degree of burst release. The everted sac model showed markedly enhanced sulpiride permeability in the case of the SLN-loaded formulation. The in situ results showed a very good correlation with the in vitro release data.

Conclusion: Incorporation of sulpiride into SLN results in enhanced intestinal permeability of sulpiride, that may in turn increase overall oral absorption of the drug. The superior attributes of the prepared SLN, specifically the high particle size uniformity and drug loading capacity, is considered novel, especially given the simplicity and modest nature of the sonication method used.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/IJN.S54413DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3872145PMC
August 2014