Publications by authors named "Aaron N Johnston"

2 Publications

  • Page 1 of 1

Freezing in a warming climate: Marked declines of a subnivean hibernator after a snow drought.

Ecol Evol 2021 Feb 29;11(3):1264-1279. Epub 2020 Dec 29.

National Park Service Sedro Woolley WA USA.

Recent snow droughts associated with unusually warm winters are predicted to increase in frequency and affect species dependent upon snowpack for winter survival. Changes in populations of some cold-adapted species have been attributed to heat stress or indirect effects on habitat from unusually warm summers, but little is known about the importance of winter weather to population dynamics and how responses to snow drought vary among sympatric species. We evaluated changes in abundance of hoary marmots () over a period that included a year of record-low snowpack to identify mechanisms associated with weather and snowpack. To consider interspecies comparisons, our analysis used the same a priori model set as a concurrent study that evaluated responses of American pikas () to weather and snowpack in the same study area of North Cascades National Park, Washington, USA. We hypothesized that marmot abundance reflected mechanisms related to heat stress, cold stress, cold exposure without an insulating snowpack, snowpack duration, atmospheric moisture, growing-season precipitation, or select combinations of these mechanisms. Changes in marmot abundances included a 74% decline from 2007 to 2016 and were best explained by an interaction of chronic dryness with exposure to acute cold without snowpack in winter. Physiological stress during hibernation from exposure to cold, dry air appeared to be the most likely mechanism of change in marmot abundance. Alternative mechanisms associated with changes to winter weather, including early emergence from hibernation or altered vegetation dynamics, had less support. A post hoc assessment of vegetative phenology and productivity did not support vegetation dynamics as a primary driver of marmot abundance across years. Although marmot and pika abundances were explained by strikingly similar models over periods of many years, details of the mechanisms involved likely differ between species because pika abundances increased in areas where marmots declined. Such differences may lead to diverging geographic distributions of these species as global change continues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.7126DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863385PMC
February 2021

Ecological consequences of anomalies in atmospheric moisture and snowpack.

Ecology 2019 04 13;100(4):e02638. Epub 2019 Mar 13.

National Park Service, North Cascades National Park Service Complex, 810 State Route 20, Sedro Woolley, Washington, 98284, USA.

Although increased frequency of extreme-weather events is one of the most secure predictions associated with contemporary climate change, effects of such events on distribution and abundance of climate-sensitive species remain poorly understood. Montane ecosystems may be especially sensitive to extreme weather because of complex abiotic and biotic interactions that propagate from climate-driven reductions in snowpack. Snowpack not only protects subnivean biotas from extreme cold, but also influences forage availability through timing of melt-off and water availability. We related relative abundances of an alpine mammal, the American pika (Ochotona princeps), to measures of weather and snowpack dynamics over an 8-yr period that included before and after a year of record-low snowpack in Washington, USA. We sought to (1) quantify any change in pika abundance associated with the snowpack anomaly and (2) identify aspects of weather and snowpack that influenced abundance of pikas. Pikas showed a 1-yr lag response to the snowpack anomaly and exhibited marked declines in abundance at elevations below 1,400 m simultaneous with increased abundances at higher elevations. Atmospheric moisture, indexed by vapor pressure deficit (VPD), was especially important, evidenced by strong support for the top-ranked model that included the interaction of VPD with snowpack duration. Notably, our novel application of VPD from gridded climate data for analyses of animal abundances shows strong potential for improving species distribution models because VPD represents an important aspect of weather that influences the physiology and habitat of biota. Pikas were apparently affected by cold stress without snowpack at mid elevations, whereas changes to forage associated with snowpack and VPD were influential at high and low elevations. Our results reveal context dependency in pika responses to weather and illustrate how snow drought can lead to rapid change in the abundance of subnivean animals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ecy.2638DOI Listing
April 2019