Publications by authors named "A A Sheikh"

2,113 Publications

  • Page 1 of 1

Unveiling the unreal: Comprehensive imaging review of hepatic pseudolesions.

Clin Imaging 2021 Sep 17;80:439-453. Epub 2021 Sep 17.

Department of Radiology, University Hospitals Cleveland Medical Centre, Case Western Reserve University, Cleveland, OH, USA.

Hepatic pseudolesions are defined as non-neoplastic focal abnormalities of the liver which can mimic or conceal true liver lesions. It is particularly common in liver due to its unique dual blood supply and the existence of multilevel anastomosis between them. Because of the recent advances in CT and MRI technology, they are being increasingly encountered in daily practice. Broadly they can be categorised in to (1) Focal parenchymal abnormalities like focal fatty change, focal fat sparing, focal confluent fibrosis, segmental hypertrophy and regenerative nodules, (2) Perfusion abnormalities which include transient hepatic parenchymal enhancement in portal vein obstruction, third inflow, intrahepatic shunts, hepatic arterial occlusion and hepatic venous obstruction, (3) Imaging pitfalls like parenchymal compression, unenhanced vessels and pseudolipoma. It is essential for the radiologists to be familiar with the typical and atypical imaging features of pseudolesions to avoid mistaking them for sinister pathologies and also to avoid overlooking underlying hidden pathologies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinimag.2021.09.008DOI Listing
September 2021

Combined lead and zinc oxide-nanoparticles induced thyroid toxicity through 8-OHdG oxidative stress-mediated inflammation, apoptosis, and Nrf2 activation in rats.

Environ Toxicol 2021 Sep 23. Epub 2021 Sep 23.

Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.

A human is exposed to a chemical mixture rather than a single chemical, particularly with the wide spread of nanomaterials. Therefore, the present study evaluated the combined exposure of lead acetate (Pb) and zinc oxide-nanoparticles (ZnO-NPs) compared to each metal alone on the thyroid gland of adult rats. A total of 30 adult male albino rats were divided into four groups, group I (control), group II received Pb (10 mg/kg), group III received ZnO-NPs (85 mg/kg) and group IV co-administrated the two metals in the same previous doses. The materials were gavaged for 8 weeks. The toxicity was assessed through several biochemical parameters. Our results revealed significant body weight reduction relative to increased thyroid weights, decreased both of serum-free triiodothyronine (FT3), tetra-iodothyronine (FT4), increased thyroid-stimulating hormone (TSH), increased serum and thyroid levels of Pb and zinc, significant elevation in tumor necrosis factor-α (TNF-α), reduction in interleukin 4 (IL4), upregulation of Bax, and downregulation of Bcl-2 genes. Additionally, there was significant overexpression of nuclear factor erythroid 2-related factor 2(Nrf2), 8-Hydroxydeoxyguanosine(8-OHdG), the elevation of tissues malondialdehyde (MDA), reduction of tissues total antioxidant capacity (TAC), and disruptive thyroid structural alterations in all metals groups with marked changes in the combined metals group. In conclusion, the combined exposure of Pb and ZnO-NPs induced pronounced toxic thyroid injury, pointing to additive effects in rats than the individual metal effects through different significant changes of disruptive thyroid structural alterations related to the loading of thyroid tissues with Pb and zinc metals producing oxidative stress that mediated inflammation and apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23373DOI Listing
September 2021

Acute social and somatic stress alters cortical metaplasticity probed with non-invasive brain stimulation in humans.

Int J Psychophysiol 2021 Sep 20;170:1-5. Epub 2021 Sep 20.

Department of Neurology, Hackensack University Medical Center, Hackensack Meridian School of Medicine, Hackensack, NJ, USA. Electronic address:

Studying the neuronal mechanisms that govern the cortical adaptations to acute stress is critical for understanding the development of neuropsychiatric diseases. Homeostatic plasticity stabilizes the neural activity in which a previous synaptic event drives subsequent synaptic plasticity. In this study, we evaluated the effect of acute stress induced with the socially evaluated cold pressor test (SECPT) on cortical metaplasticity in humans using a non-invasive brain stimulation protocol. After being exposed to the SECPT and control stress conditions, 30 healthy participants were tested for cortical metaplasticity assessed with changes in the amplitude of the motor evoked potential (MEP) induced by a single-pulse transcranial magnetic stimulation (TMS). Cortical metaplasticity was induced by combining priming with cathodal tDCS (cTDCS) followed by a sub-threshold 1-Hz repetitive stimulation (rTMS) test session. Our results showed that SECPT induced cardiovascular adaptations (increase in systolic, diastolic blood pressure, and heart rate), indicating that SECPT effectively induced acute stress. Also, in our experiments stimulation of subjects with 1-Hz rTMS after they had undergone the SECPT condition induced inhibition of MEP whereas 1-Hz rTMS administered after the control condition induced a facilitatory (physiologic) response pattern. Here we observed that acute stress impairs homeostatic metaplasticity. The dysfunctional regulation of cortical plastic changes after stress could play a pivotal role in the pathogenesis of neurological and psychiatric diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpsycho.2021.09.004DOI Listing
September 2021

Risk prediction of covid-19 related death and hospital admission in adults after covid-19 vaccination: national prospective cohort study.

BMJ 2021 09 17;374:n2244. Epub 2021 Sep 17.

Division of Primary Care, School of Medicine, University of Nottingham, Nottingham, UK.

Objectives: To derive and validate risk prediction algorithms to estimate the risk of covid-19 related mortality and hospital admission in UK adults after one or two doses of covid-19 vaccination.

Design: Prospective, population based cohort study using the QResearch database linked to data on covid-19 vaccination, SARS-CoV-2 results, hospital admissions, systemic anticancer treatment, radiotherapy, and the national death and cancer registries.

Settings: Adults aged 19-100 years with one or two doses of covid-19 vaccination between 8 December 2020 and 15 June 2021.

Main Outcome Measures: Primary outcome was covid-19 related death. Secondary outcome was covid-19 related hospital admission. Outcomes were assessed from 14 days after each vaccination dose. Models were fitted in the derivation cohort to derive risk equations using a range of predictor variables. Performance was evaluated in a separate validation cohort of general practices.

Results: Of 6 952 440 vaccinated patients in the derivation cohort, 5 150 310 (74.1%) had two vaccine doses. Of 2031 covid-19 deaths and 1929 covid-19 hospital admissions, 81 deaths (4.0%) and 71 admissions (3.7%) occurred 14 days or more after the second vaccine dose. The risk algorithms included age, sex, ethnic origin, deprivation, body mass index, a range of comorbidities, and SARS-CoV-2 infection rate. Incidence of covid-19 mortality increased with age and deprivation, male sex, and Indian and Pakistani ethnic origin. Cause specific hazard ratios were highest for patients with Down's syndrome (12.7-fold increase), kidney transplantation (8.1-fold), sickle cell disease (7.7-fold), care home residency (4.1-fold), chemotherapy (4.3-fold), HIV/AIDS (3.3-fold), liver cirrhosis (3.0-fold), neurological conditions (2.6-fold), recent bone marrow transplantation or a solid organ transplantation ever (2.5-fold), dementia (2.2-fold), and Parkinson's disease (2.2-fold). Other conditions with increased risk (ranging from 1.2-fold to 2.0-fold increases) included chronic kidney disease, blood cancer, epilepsy, chronic obstructive pulmonary disease, coronary heart disease, stroke, atrial fibrillation, heart failure, thromboembolism, peripheral vascular disease, and type 2 diabetes. A similar pattern of associations was seen for covid-19 related hospital admissions. No evidence indicated that associations differed after the second dose, although absolute risks were reduced. The risk algorithm explained 74.1% (95% confidence interval 71.1% to 77.0%) of the variation in time to covid-19 death in the validation cohort. Discrimination was high, with a D statistic of 3.46 (95% confidence interval 3.19 to 3.73) and C statistic of 92.5. Performance was similar after each vaccine dose. In the top 5% of patients with the highest predicted covid-19 mortality risk, sensitivity for identifying covid-19 deaths within 70 days was 78.7%.

Conclusion: This population based risk algorithm performed well showing high levels of discrimination for identifying those patients at highest risk of covid-19 related death and hospital admission after vaccination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmj.n2244DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446717PMC
September 2021

Current status of novel pyridine fused derivatives as anticancer agents: An insight into future perspectives and structure activity relationship (SAR).

Curr Top Med Chem 2021 Sep 16. Epub 2021 Sep 16.

Department of Chemistry, School of Chemical and Life sciences, Jamia Hamdard, New Delhi-110062. India.

Cancer is a heterogeneous disease characterized by an abnormal and uncontrolled division of the cells leading to tumors that invade the adjacent normal tissues. After cardiovascular diseases, it is the second most prevalent disease accounting for one in every six deaths worldwide. This alarming rate thus, demands an urgent need to investigate more effective drugs to combat the said disease. Oxygen and nitrogen-based heterocyclic compounds have shown remarkable therapeutic activity towards several diseases, including cancer. In this review, we have attempted to summarize the work done in the last decade (2009-2019), highlighting the anticancer activity of pyrido fused five-membered heterocyclic ring derivatives. Additionally, we have focused on seven heterocyclic pyridine fused rings: Imidazopyridine, Triazolopyridine, Pyrrolopyridine, Pyrazolopyridines, Thienopyridine, and Isoxazolopyridine. A total of forty-nine compounds have been studied based on their in-vitro cytotoxic activity and their structure-activity relationship, underlining the anticancer activity of their various pharmacophores and substituents. This review, therefore, aims to draw the attention of the researchers worldwide towards the enormous scope of development of heterocyclic drug compounds, focussing mainly on pyrido fused five-membered heterocyclic rings as anticancer drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026621666210916171015DOI Listing
September 2021
-->