Publications by authors named "Øystein Skaala"

19 Publications

  • Page 1 of 1

Introgression of domesticated salmon changes life history and phenology of a wild salmon population.

Evol Appl 2022 May 11;15(5):853-864. Epub 2022 Apr 11.

Institute of Marine Research Bergen Norway.

The release of domesticated conspecifics into the natural environment, whether deliberate or accidental, has the potential to alter the genetic integrity and evolutionary trajectory of wild populations. This widespread challenge is of particular concern for wild Atlantic salmon. By investigating phenotypic differences between the offspring of domesticated, hybrid, and wild Atlantic salmon released into the natural environment, earlier studies have documented the short-term consequences of introgression from domesticated fish into wild salmon populations. However, few studies have investigated the joined product of introgression and natural selection after several generations. Here, we investigated the phenotypic response of an Atlantic salmon population that has been subjected to an average of 24% genetic admixture by domesticated conspecifics escaping from fish farms over three decades (approximately 6-7 generations). Individual levels of admixture were positively correlated with increased size at the smolt and adult stages for both sexes, a decrease in the age of male smolts, and a decrease in the age at maturity for males. These life history changes are presumably the consequence of the well-documented directional selection for increased growth in domesticated salmon and are likely maladaptive. However, the most novel result of this study is that admixture was positively linked with delayed date of return to the river, with highly admixed fish arriving up to 26 days later than nonadmixed fish. Potentially, this phenological change provides admixed individuals with a survival advantage in the later phase of the life cycle as it reduces their period of exposure to selection through rod and line angling. We, therefore, conclude that while gene flow from domesticated conspecifics changes life history and phenological traits of wild Atlantic salmon populations, most of which are likely to be maladaptive, when pressured by additional anthropogenic challenges, some changes may confer a fitness advantage for a short part of the life cycle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eva.13375DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108307PMC
May 2022

Time series covering up to four decades reveals major changes and drivers of marine growth and proportion of repeat spawners in an Atlantic salmon population.

Ecol Evol 2022 Apr 2;12(4):e8780. Epub 2022 Apr 2.

Institute of Marine Research Bergen Norway.

Wild Atlantic salmon populations have declined in many regions and are affected by diverse natural and anthropogenic factors. To facilitate management guidelines, precise knowledge of mechanisms driving population changes in demographics and life history traits is needed.Our analyses were conducted on (a) age and growth data from scales of salmon caught by angling in the river Etneelva, Norway, covering smolt year classes from 1980 to 2018, (b) extensive sampling of the whole spawning run in the fish trap from 2013 onwards, and (c) time series of sea surface temperature, zooplankton biomass, and salmon lice infestation intensity.Marine growth during the first year at sea displayed a distinct stepwise decline across the four decades. Simultaneously, the population shifted from predominantly 1SW to 2SW salmon, and the proportion of repeat spawners increased from 3 to 7%. The latter observation is most evident in females and likely due to decreased marine exploitation. Female repeat spawners tended to be less catchable than males by anglers.Depending on the time period analyzed, marine growth rate during the first year at sea was both positively and negatively associated with sea surface temperature. Zooplankton biomass was positively associated with growth, while salmon lice infestation intensity was negatively associated with growth.Collectively, these results are likely to be linked with both changes in oceanic conditions and harvest regimes. Our conflicting results regarding the influence of sea surface temperature on marine growth are likely to be caused by long-term increases in temperature, which may have triggered (or coincided with) ecosystem shifts creating generally poorer growth conditions over time, but within shorter datasets warmer years gave generally higher growth. We encourage management authorities to expand the use of permanently monitored reference rivers with complete trapping facilities, like the river Etneelva, generating valuable long-term data for future analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.8780DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976282PMC
April 2022

Long-term monitoring of a brown trout (Salmo trutta) population reveals kin-associated migration patterns and contributions by resident trout to the anadromous run.

BMC Ecol Evol 2021 07 13;21(1):143. Epub 2021 Jul 13.

Department of Biology, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.

Background: In species showing partial migration, as is the case for many salmonid fishes, it is important to assess how anthropogenic pressure experienced by migrating individuals affects the total population. We focused on brown trout (Salmo trutta) from the Guddal River in the Norwegian Hardanger Fjord system, which encompasses both resident and anadromous individuals. Aquaculture has led to increased anthropogenic pressure on brown trout during the marine phase in this region. Fish traps in the Guddal River allow for sampling all ascending anadromous spawners and descending smolts. We analyzed microsatellite DNA markers from all individuals ascending in 2006-2016, along with all emigrating smolts in 2017. We investigated (1) if there was evidence for declines in census numbers and effective population size during that period, (2) if there was association between kinship and migration timing in smolts and anadromous adults, and (3) to what extent resident trout were parents of outmigrating smolts.

Results: Census counts of anadromous spawners showed no evidence for a decline from 2006 to 2016, but were lower than in 2000-2005. Estimates of effective population size also showed no trends of declines during the study period. Sibship reconstruction of the 2017 smolt run showed significant association between kinship and migration timing, and a similar association was indicated in anadromous spawners. Parentage assignment of 2017 smolts with ascending anadromous trout as candidate parents, and assuming that unknown parents represented resident trout, showed that 70% of smolts had at least one resident parent and 24% had two resident parents.

Conclusions: The results bear evidence of a population that after an initial decline has stabilized at a lower number of anadromous spawners. The significant association between kinship and migration timing in smolts suggests that specific episodes of elevated mortality in the sea could disproportionally affect some families and reduce overall effective population size. Finally, the results based on parentage assignment demonstrate a strong buffering effect of resident trout in case of elevated marine mortality affecting anadromous trout, but also highlight that increased mortality of anadromous trout, most of which are females, may lower overall production in the system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12862-021-01876-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8276402PMC
July 2021

Genetic analysis redraws the management boundaries for the European sprat.

Evol Appl 2020 Sep 17;13(8):1906-1922. Epub 2020 Mar 17.

Institute of Marine Research Bergen Norway.

Sustainable fisheries management requires detailed knowledge of population genetic structure. The European sprat is an important commercial fish distributed from Morocco to the Arctic circle, Baltic, Mediterranean, and Black seas. Prior to 2018, annual catch advice on sprat from the International Council for the Exploration of the Sea (ICES) was based on five putative stocks: (a) North Sea, (b) Kattegat-Skagerrak and Norwegian fjords, (c) Baltic Sea, (d) West of Scotland-southern Celtic Seas, and (e) English Channel. However, there were concerns that the sprat advice on stock size estimates management plan inadequately reflected the underlying biological units. Here, we used ddRAD sequencing to develop 91 SNPs that were thereafter used to genotype approximately 2,500 fish from 40 locations. Three highly distinct and relatively homogenous genetic groups were identified: (a) Norwegian fjords; (b) Northeast Atlantic including the North Sea, Kattegat-Skagerrak, Celtic Sea, and Bay of Biscay; and (c) Baltic Sea. Evidence of genetic admixture and possibly physical mixing was detected in samples collected from the transition zone between the North and Baltic seas, but not between any of the other groups. These results have already been implemented by ICES with the decision to merge the North Sea and the Kattegat-Skagerrak sprat to be assessed as a single unit, thus demonstrating that genetic data can be rapidly absorbed to align harvest regimes and biological units.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eva.12942DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463317PMC
September 2020

Atlantic salmon and sea trout display synchronised smolt migration relative to linked environmental cues.

Sci Rep 2020 02 26;10(1):3529. Epub 2020 Feb 26.

Institute of Marine Research (IMR), Bergen, Norway.

Anadromous salmon and sea trout smolts face challenging migrations from freshwater to the marine environment characterised by high mortality. Therefore, the timing of smolt migration is likely to be critical for survival. Time-series comparing migration of Atlantic salmon and sea trout smolts in the same river, and their response to the same environmental cues, are scarce. Here, we analysed migration timing of ~41 000 Atlantic salmon and sea trout smolts over a 19-year period from the river Guddalselva, western Norway. Trout displayed a longer migration window in earlier years, which decreased over time to become more similar to the salmon migration window. On average, salmon migrated out of the river earlier than trout. Migration of both species was significantly influenced by river water temperature and water discharge, but their relative influence varied across the years. On average, body-length of smolts of both species overlapped, however, size differences were observed within the migration period and among the years. We conclude that salmon and trout smolts in this river are highly synchronised and migrate in response to the same range of linked environmental cues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-60588-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7044379PMC
February 2020

Epistatic regulation of growth in Atlantic salmon revealed: a QTL study performed on the domesticated-wild interface.

BMC Genet 2020 02 7;21(1):13. Epub 2020 Feb 7.

Population Genetics Research group, Institute of Marine Research, P.O. Box 1870, Nordnes, NO-5817, Bergen, Norway.

Background: Quantitative traits are typically considered to be under additive genetic control. Although there are indications that non-additive factors have the potential to contribute to trait variation, experimental demonstration remains scarce. Here, we investigated the genetic basis of growth in Atlantic salmon by exploiting the high level of genetic diversity and trait expression among domesticated, hybrid and wild populations.

Results: After rearing fish in common-garden experiments under aquaculture conditions, we performed a variance component analysis in four mapping populations totaling ~ 7000 individuals from six wild, two domesticated and three F1 wild/domesticated hybrid strains. Across the four independent datasets, genome-wide significant quantitative trait loci (QTLs) associated with weight and length were detected on a total of 18 chromosomes, reflecting the polygenic nature of growth. Significant QTLs correlated with both length and weight were detected on chromosomes 2, 6 and 9 in multiple datasets. Significantly, epistatic QTLs were detected in all datasets.

Discussion: The observed interactions demonstrated that the phenotypic effect of inheriting an allele deviated between half-sib families. Gene-by-gene interactions were also suggested, where the combined effect of two loci resulted in a genetic effect upon phenotypic variance, while no genetic effect was detected when the two loci were considered separately. To our knowledge, this is the first documentation of epistasis in a quantitative trait in Atlantic salmon. These novel results are of relevance for breeding programs, and for predicting the evolutionary consequences of domestication-introgression in wild populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12863-020-0816-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006396PMC
February 2020

Population genetic analysis reveals a geographically limited transition zone between two genetically distinct Atlantic salmon lineages in Norway.

Ecol Evol 2019 Jun 22;9(12):6901-6921. Epub 2019 May 22.

Institute of Marine Research Bergen Norway.

Atlantic salmon is characterized by a high degree of population genetic structure throughout its native range. However, while populations inhabiting rivers in Norway and Russia make up a significant proportion of salmon in the Atlantic, thus far, genetic studies in this region have only encompassed low to modest numbers of populations. Here, we provide the first "in-depth" investigation of population genetic structuring in the species in this region. Analysis of 18 microsatellites on >9,000 fish from 115 rivers revealed highly significant population genetic structure throughout, following a hierarchical pattern. The highest and clearest level of division separated populations north and south of the Lofoten region in northern Norway. In this region, only a few populations displayed intermediate genetic profiles, strongly indicating a geographically limited transition zone. This was further supported by a dedicated cline analysis. Population genetic structure was also characterized by a pattern of isolation by distance. A decline in overall genetic diversity was observed from the south to the north, and two of the microsatellites showed a clear decrease in number of alleles across the observed transition zone. Together, these analyses support results from previous studies, that salmon in Norway originate from two main genetic lineages, one from the Barents-White Sea refugium that recolonized northern Norwegian and adjacent Russian rivers, and one from the eastern Atlantic that recolonized the rest of Norway. Furthermore, our results indicate that local conditions in the limited geographic transition zone between the two observed lineages, characterized by open coastline with no obvious barriers to gene flow, are strong enough to maintain the genetic differentiation between them.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.5258DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6662299PMC
June 2019

An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits.

Evol Appl 2019 Jun 6;12(5):1001-1016. Epub 2019 Mar 6.

Institute of Marine Research Nordnes, Bergen Norway.

Interactions between domesticated escapees and wild conspecifics represent a threat to the genetic integrity and fitness of native populations. For Atlantic salmon, the recurrent presence of large numbers of domesticated escapees in the wild makes it necessary to better understand their impacts on native populations. We planted 254,400 eggs from 75 families of domesticated, F1-hybrid, and wild salmon in a river containing up- and downstream traps. Additionally, 41,630 hatchery smolts of the same pedigrees were released into the river. Over 8 years, 6,669 out-migrating smolts and 356 returning adults were recaptured and identified to their families of origin with DNA. In comparison with wild salmon, domesticated fish had substantially lower egg to smolt survival (1.8% vs. 3.8% across cohorts), they migrated earlier in the year (11.8 days earlier across years), but they only displayed marginally larger smolt sizes and marginally lower smolt ages. Upon return to freshwater, domesticated salmon were substantially larger at age than wild salmon (2.4 vs. 2.0, 4.8 vs. 3.2, and 8.5 vs. 5.6 kg across sexes for 1, 2, and 3 sea-winter fish) and displayed substantially lower released smolt to adult survival (0.41% vs. 0.94% across releases). Overall, egg-to-returning adult survival ratios were 1:0.76:0.30 and 1:0.44:0.21 for wild:F1-hybrid:domesticated salmon, respectively, using two different types of data. This study represents the most updated and extensive analysis of domesticated, hybrid, and wild salmon in the wild and provides the first documentation of a clear genetic difference in the timing of smolt migration-an adaptive trait presumed to be linked with optimal timing of entry to seawater. We conclude that spawning and hybridization of domesticated escapees can lead to (i) reduced wild smolt output and therefore wild adult abundance, through resource competition in freshwater, (ii) reduced total adult abundance due to freshwater competition and reduced marine survival of domesticated salmon, and (iii) maladaptive changes in phenotypic traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eva.12777DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6503829PMC
June 2019

Cryptic introgression: evidence that selection and plasticity mask the full phenotypic potential of domesticated Atlantic salmon in the wild.

Sci Rep 2018 09 18;8(1):13966. Epub 2018 Sep 18.

Institute of Marine Research, P.O. Box 1870, N-5817, Bergen, Norway.

Domesticated Atlantic salmon grow much faster than wild salmon when reared together in fish tanks under farming conditions (size ratios typically 1:2-3). In contrast, domesticated salmon only display marginally higher growth than wild salmon when reared together in rivers (size ratios typically 1:1-1.2). This begs the question why? Is this a difference in the plastic response driven by divergent energy budgets between the two environments, or is it a result of selection, whereby domesticated salmon that display the greatest growth-potential are those at greatest risk of mortality in the wild? We reared domesticated, hybrid and wild salmon in a river until they smoltified at age 2 or 4, and thereafter in fish tanks for a further 2 years. In the river, there was no difference in the mean size between the groups. In contrast, after being transferred from the river to fish tanks, the domesticated salmon significantly outgrew the wild salmon (maximum size ratio of ~1:1.8). This demonstrates that selection alone cannot be responsible for the lack of growth differences observed between domesticated and wild salmon in rivers. Nevertheless, the final size ratios observed after rearing in tanks were lower than expected in that environment, thus suggesting that plasticity, as for selection, cannot be the sole mechanism. We therefore conclude that a combination of energy-budget plasticity, and selection via growth-potential mortality, cause the differences in growth reaction norms between domesticated and wild salmon across these contrasting environments. Our results imply that if phenotypic changes are not observed in wild populations following introgression of domesticated conspecifics, it does not mean that functional genetic changes have not occurred in the admixed population. Clearly, under the right environmental conditions, the underlying genetic changes will manifest themselves in the phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-32467-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6143624PMC
September 2018

Judging a salmon by its spots: environmental variation is the primary determinant of spot patterns in Salmo salar.

BMC Ecol 2018 04 12;18(1):14. Epub 2018 Apr 12.

Institute of Marine Research, Postboks 1870, Nordnes, 5817, Bergen, Norway.

Background: In fish, morphological colour changes occur from variations in pigment concentrations and in the morphology, density, and distribution of chromatophores in the skin. However, the underlying mechanisms remain unresolved in most species. Here, we describe the first investigation into the genetic and environmental basis of spot pattern development in one of the world's most studied fishes, the Atlantic salmon. We reared 920 salmon from 64 families of domesticated, F1-hybrid and wild origin in two contrasting environments (Hatchery; tanks for the freshwater stage and sea cages for the marine stage, and River; a natural river for the freshwater stage and tanks for the marine stage). Fish were measured, photographed and spot patterns evaluated.

Results: In the Hatchery experiment, significant but modest differences in spot density were observed among domesticated, F1-hybrid (1.4-fold spottier than domesticated) and wild salmon (1.7-fold spottier than domesticated). A heritability of 6% was calculated for spot density, and a significant QTL on linkage group SSA014 was detected. In the River experiment, significant but modest differences in spot density were also observed among domesticated, F1-hybrid (1.2-fold spottier than domesticated) and wild salmon (1.8-fold spottier than domesticated). Domesticated salmon were sevenfold spottier in the Hatchery vs. River experiment. While different wild populations were used for the two experiments, on average, these were 6.2-fold spottier in the Hatchery vs. River experiment. Fish in the Hatchery experiment displayed scattered to random spot patterns while fish in the River experiment displayed clustered spot patterns.

Conclusions: These data demonstrate that while genetics plays an underlying role, environmental variation represents the primary determinant of spot pattern development in Atlantic salmon.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12898-018-0170-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897946PMC
April 2018

Timing is everything: Fishing-season placement may represent the most important angling-induced evolutionary pressure on Atlantic salmon populations.

Ecol Evol 2017 09 11;7(18):7490-7502. Epub 2017 Aug 11.

Institute of Marine Research Bergen Norway.

Fisheries-induced evolution can change the trajectory of wild fish populations by selectively targeting certain phenotypes. For important fish species like Atlantic salmon, this could have large implications for their conservation and management. Most salmon rivers are managed by specifying an angling season of predetermined length based on population demography, which is typically established from catch statistics. Given the circularity of using catch statistics to estimate demographic parameters, it may be difficult to quantify the selective nature of angling and its evolutionary impact. In the River Etne in Norway, a recently installed trap permits daily sampling of fish entering the river, some of which are subsequently captured by anglers upstream. Here, we used 31 microsatellites to establish an individual DNA profile for salmon entering the trap, and for many of those subsequently captured by anglers. These data permitted us to investigate time of rod capture relative to river entry, potential body size-selective harvest, and environmental variables associated with river entry. Larger, older fish entered the river earlier than smaller, younger fish of both sexes, and larger, older females were more abundant than males and vice versa. There was good agreement between the sizes of fish harvested by angling, and the size distribution of the population sampled on the trap. These results demonstrate that at least in this river, and with the current timing of the season, the angling catch reflects the population's demographics and there is no evidence of size-selective harvest. We also demonstrated that the probability of being caught by angling declines quickly after river entry. Collectively, these data indicate that that the timing of the fishing season, in relation to the upstream migration patterns of the different demographics of the population, likely represents the most significant directional evolutionary force imposed by angling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ece3.3304DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606871PMC
September 2017

The frequency of spontaneous triploidy in farmed Atlantic salmon produced in Norway during the period 2007-2014.

BMC Genet 2015 Apr 11;16:37. Epub 2015 Apr 11.

Institute of Marine Research, PO Box 1870, Nordnes, 5817, Bergen, Norway.

Background: Spontaneous triploidy has been reported in a number of fish species, and is often linked with in vivo or in vitro ageing of eggs post ovulation. Here, we provide the first investigation into the frequency of spontaneous triploidy in farmed Atlantic salmon by analysing more than 4000 fish from 55 farms, and approximately 1000 recaptured escapees, all sampled in the period 2007-2014. In addition, we compare microsatellite genotyping against flow cytometry and red blood cell diameter in a set of 45 putatively diploid and 45 putatively triploid Atlantic salmon.

Results: The three methods implemented for ploidy determination gave consistent results, thus validating the methods used here. Overall, 2.0% spontaneous triploids were observed in salmon sampled on farms. The frequency of spontaneous triploids varied greatly among sea cages (0-28%), but they were observed in similar frequencies among the three primary breeding companies (1.8-2.4%). Spontaneous triploids were observed in all farming regions in Norway, and in all years sampled. Spontaneous triploids were also observed among the escapees recaptured in both the marine environment and in rivers.

Conclusions: Spontaneous triploidy in commercially produced Atlantic salmon is likely to be a result of the practices employed by the industry. For logistical reasons, there is sometimes a pause of hours, and in some cases overnight, between killing the female broodfish, removal of her eggs, and fertilization. This gives the eggs time to age post ovulation, and increases the probability of duplication of the maternal chromosome set by inhibition of the second polar body release after normal meiosis II in the oocyte.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12863-015-0193-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4396060PMC
April 2015

Atlantic salmon populations invaded by farmed escapees: quantifying genetic introgression with a Bayesian approach and SNPs.

BMC Genet 2013 Aug 23;14:74. Epub 2013 Aug 23.

Section of Population Genetics and Ecology, Institute of Marine Research, Bergen, Norway.

Background: Many native Atlantic salmon populations have been invaded by domesticated escapees for three decades or longer. However, thus far, the cumulative level of gene-flow that has occurred from farmed to wild salmon has not been reported for any native Atlantic salmon population. The aim of the present study was to investigate temporal genetic stability in native populations, and, quantify gene-flow from farmed salmon that caused genetic changes where they were observed. This was achieved by genotyping historical and contemporary samples from 20 populations covering all of Norway with recently identified single nucleotide polymorphism markers that are collectively diagnostic for farmed and wild salmon. These analyses were combined with analysis of farmed salmon and implementation of Approximate Bayesian computation based simulations.

Results: Five of the populations displayed statistically significant temporal genetic changes. All five of these populations became more similar to a pool of farmed fish with time, strongly suggesting introgression of farmed fish as the primary cause. The remaining 15 populations displayed weak or non-significant temporal genetic changes. Estimated introgression of farmed fish ranged from 2-47% per population using approximate Bayesian computation. Thus, some populations exhibited high degrees of farmed salmon introgression while others were more or less unaffected. The observed frequency of escapees in each population was moderately correlated with estimated introgression per population R² = 0.47 P < 0.001. Genetic isolation by distance existed within the historical and contemporary data sets, however, the among-population level of divergence decreased with time.

Conclusions: This is the first study to quantify cumulative introgression of farmed salmon in any native Atlantic salmon population. The estimations demonstrate that the level of introgression has been population-specific, and that the level of introgression is not solely predicted by the frequency of escapees observed in the population. However, some populations have been strongly admixed with farmed salmon, and these data provide policy makers with unique information to address this situation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2156-14-74DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3765417PMC
August 2013

Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar).

Glob Chang Biol 2014 Jan 21;20(1):61-75. Epub 2013 Nov 21.

Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, Oslo, N-0316, Norway.

Migrations between different habitats are key events in the lives of many organisms. Such movements involve annually recurring travel over long distances usually triggered by seasonal changes in the environment. Often, the migration is associated with travel to or from reproduction areas to regions of growth. Young anadromous Atlantic salmon (Salmo salar) emigrate from freshwater nursery areas during spring and early summer to feed and grow in the North Atlantic Ocean. The transition from the freshwater ('parr') stage to the migratory stage where they descend streams and enter salt water ('smolt') is characterized by morphological, physiological and behavioural changes where the timing of this parr-smolt transition is cued by photoperiod and water temperature. Environmental conditions in the freshwater habitat control the downstream migration and contribute to within- and among-river variation in migratory timing. Moreover, the timing of the freshwater emigration has likely evolved to meet environmental conditions in the ocean as these affect growth and survival of the post-smolts. Using generalized additive mixed-effects modelling, we analysed spatio-temporal variations in the dates of downstream smolt migration in 67 rivers throughout the North Atlantic during the last five decades and found that migrations were earlier in populations in the east than the west. After accounting for this spatial effect, the initiation of the downstream migration among rivers was positively associated with freshwater temperatures, up to about 10 °C and levelling off at higher values, and with sea-surface temperatures. Earlier migration occurred when river discharge levels were low but increasing. On average, the initiation of the smolt seaward migration has occurred 2.5 days earlier per decade throughout the basin of the North Atlantic. This shift in phenology matches changes in air, river, and ocean temperatures, suggesting that Atlantic salmon emigration is responding to the current global climate changes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.12363DOI Listing
January 2014

Molecular genetic analysis of stomach contents reveals wild Atlantic cod feeding on piscine reovirus (PRV) infected Atlantic salmon originating from a commercial fish farm.

PLoS One 2013 19;8(4):e60924. Epub 2013 Apr 19.

Institute of Marine Research, Bergen, Norway.

In March 2012, fishermen operating in a fjord in Northern Norway reported catching Atlantic cod, a native fish forming an economically important marine fishery in this region, with unusual prey in their stomachs. It was speculated that these could be Atlantic salmon, which is not typical prey for cod at this time of the year in the coastal zone. These observations were therefore reported to the Norwegian Directorate of Fisheries as a suspected interaction between a local fish farm and this commercial fishery. Statistical analyses of genetic data from 17 microsatellite markers genotyped on 36 partially-degraded prey, samples of salmon from a local fish farm, and samples from the nearest wild population permitted the following conclusions: 1. The prey were Atlantic salmon, 2. These salmon did not originate from the local wild population, and 3. The local farm was the most probable source of these prey. Additional tests demonstrated that 21 of the 36 prey were infected with piscine reovirus. While the potential link between piscine reovirus and the disease heart and skeletal muscle inflammation is still under scientific debate, this disease had caused mortality of large numbers of salmon in the farm in the month prior to the fishermen's observations. These analyses provide new insights into interactions between domesticated and wild fish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060924PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631239PMC
November 2013

Does domestication cause changes in growth reaction norms? A study of farmed, wild and hybrid Atlantic salmon families exposed to environmental stress.

PLoS One 2013 31;8(1):e54469. Epub 2013 Jan 31.

Section of Population Genetics and Ecology, Institute of Marine Research, Bergen, Norway.

One of the most important traits linked with the successful domestication of animals is reducing their sensitivity to environmental stressors in the human controlled environment. In order to examine whether domestication selection in Atlantic salmon Salmo salar L., over approximately ten generations, has inadvertently selected for reduced responsiveness to stress, we compared the growth reaction norms of 29 wild, hybrid and domesticated families reared together under standard hatchery conditions (control) and in the presence of a stressor (reduced water level twice daily). The experiment was conducted for a 14 week period. Farmed salmon outgrew wild salmon 1:2.93 in the control tanks, and no overlap in mean weight was displayed between families representing the three groups. Thus, the elevation of the reaction norms differed among the groups. Overall, growth was approximately 25% lower in the stressed tanksl; however, farmed salmon outgrew wild salmon 1:3.42 under these conditions. That farmed salmon maintained a relatively higher growth rate than the wild salmon in the stressed tanks demonstrates a lower responsiveness to stress in the farmed salmon. Thus, flatter reaction norm slopes were displayed in the farmed salmon, demonstrating reduced plasticity for this trait under these specific experimental conditions. For all growth measurements, hybrid salmon displayed intermediate values. Wild salmon displayed higher heritability estimates for body weight than the hybrid and farmed salmon in both environments. This suggests reduced genetic variation for body weight in the farmed contra wild salmon studied here. While these results may be linked to the specific families and stocks investigated, and verification in other stocks and traits is needed, these data are consistent with the theoretical predictions of domestication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054469PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3561353PMC
August 2013

Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway.

PLoS One 2012 15;7(8):e43129. Epub 2012 Aug 15.

Section of Population Genetics and Ecology, Institute of Marine Research, Bergen, Norway.

Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world's largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15-30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970-2010. Based upon the analysis of 22 microsatellites, individual admixture, F(ST) and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P=0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global F(ST) =0.038) and contemporary data sets (global F(ST) =0.030), although significantly reduced with time (P=0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global F(ST) dropped from 0.058 to 0.039, P=0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043129PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419752PMC
January 2013

A comparison of SNP and STR loci for delineating population structure and performing individual genetic assignment.

BMC Genet 2010 Jan 6;11. Epub 2010 Jan 6.

Institute of Marine Research, PO Box 1870, Nordnes N- 5817 Bergen, Norway.

Background: Technological advances have lead to the rapid increase in availability of single nucleotide polymorphisms (SNPs) in a range of organisms, and there is a general optimism that SNPs will become the marker of choice for a range of evolutionary applications. Here, comparisons between 300 polymorphic SNPs and 14 short tandem repeats (STRs) were conducted on a data set consisting of approximately 500 Atlantic salmon arranged in 10 samples/populations.

Results: Global FST ranged from 0.033-0.115 and -0.002-0.316 for the 14 STR and 300 SNP loci respectively. Global FST was similar among 28 linkage groups when averaging data from mapped SNPs. With the exception of selecting a panel of SNPs taking the locus displaying the highest global FST for each of the 28 linkage groups, which inflated estimation of genetic differentiation among the samples, inferred genetic relationships were highly similar between SNP and STR data sets and variants thereof. The best 15 SNPs (30 alleles) gave a similar level of self-assignment to the best 4 STR loci (83 alleles), however, addition of further STR loci did not lead to a notable increase assignment whereas addition of up to 100 SNP loci increased assignment.

Conclusion: Whilst the optimal combinations of SNPs identified in this study are linked to the samples from which they were selected, this study demonstrates that identification of highly informative SNP loci from larger panels will provide researchers with a powerful approach to delineate genetic relationships at the individual and population levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1471-2156-11-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818610PMC
January 2010

Gene flow, effective population size and selection at major histocompatibility complex genes: brown trout in the Hardanger Fjord, Norway.

Mol Ecol 2007 Apr;16(7):1413-25

Technical University of Denmark Danish Institute for Fisheries Research, Department of Inland Fisheries, Vejlsøvej 39, DK-8600 Silkeborg, Denmark.

Brown trout populations in the Hardanger Fjord, Norway, have declined drastically due to increased exposure to salmon lice from salmonid aquaculture. We studied contemporary samples from seven populations and historical samples (1972 and 1983) from the two largest populations, one of which has declined drastically whereas the other remains stable. We analysed 11 microsatellite loci, including one tightly linked to the UBA gene of the major histocompatibility class I complex (MHC) and another locus linked to the TAP2A gene, also associated with MHC. The results revealed asymmetric gene flow from the two largest populations to the other, smaller populations. This has important conservation implications, and we predict that possible future population recoveries will be mediated primarily by the remaining large population. Tests for selection suggested diversifying selection at UBA, whereas evidence was inconclusive for TAP2A. There was no evidence for temporally fluctuating selection. We assessed the distribution of adaptive divergence among populations. The results showed the most pronounced footprints of selection between the two largest populations subject to the least immigration. We suggest that asymmetric gene flow has an important influence on adaptive divergence and constrains local adaptive responses in the smaller populations. Even though UBA alleles may not affect salmon louse resistance, the results bear evidence of adaptive divergence among populations at immune system genes. This suggests that similar genetic differences could exist at salmon louse resistance loci, thus rendering it a realistic scenario that differential population declines could reflect differences in adaptive variation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2007.03255.xDOI Listing
April 2007
-->