Publications by authors named "Álvaro Quintanal-Villalonga"

19 Publications

  • Page 1 of 1

Identification of Predictive Biomarkers of Response to HSP90 Inhibitors in Lung Adenocarcinoma.

Int J Mol Sci 2021 Mar 3;22(5). Epub 2021 Mar 3.

CIBERONC, Respiratory Tract Tumors Program, 28029 Madrid, Spain.

Heat shock protein 90 (HSP90) plays an essential role in lung adenocarcinoma, acting as a key chaperone involved in the correct functioning of numerous highly relevant protein drivers of this disease. To this end, HSP90 inhibitors have emerged as promising therapeutic strategies, even though responses to them have been limited to date. Given the need to maximize treatment efficacy, the objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic techniques to identify proteins in human lung adenocarcinoma cell lines whose basal abundances were correlated with response to HSP90 inhibitors (geldanamycin and radicicol derivatives). From the protein profiles identified according to response, the relationship between lactate dehydrogenase B (LDHB) and DNA topoisomerase 1 (TOP1) with respect to sensitivity and resistance, respectively, to geldanamycin derivatives is noteworthy. Likewise, rhotekin (RTKN) and decaprenyl diphosphate synthase subunit 2 (PDSS2) were correlated with sensitivity and resistance to radicicol derivatives. We also identified a relationship between resistance to HSP90 inhibition and the p53 pathway by glucose deprivation. In contrast, arginine biosynthesis was correlated with sensitivity to HSP90 inhibitors. Further study of these outcomes could enable the development of strategies to improve the clinical efficacy of HSP90 inhibition in patients with lung adenocarcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22052538DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7962034PMC
March 2021

Direct genome editing of patient-derived xenografts using CRISPR-Cas9 enables rapid functional genomics.

Nat Cancer 2020 Mar 9;1(3):359-369. Epub 2020 Mar 9.

Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.

Patient-derived xenografts are high fidelity tumor models that accurately reflect many key aspects of human cancer. In contrast to either cancer cell lines or genetically engineered mouse models, the utility of PDXs has been limited by the inability to perform targeted genome editing of these tumors. To address this limitation, we have developed methods for CRISPR-Cas9 editing of PDXs using a tightly regulated, inducible Cas9 vector that does not require culture for selection of transduced cells. We demonstrate the utility of this platform in PDXs (1) to analyze genetic dependencies by targeted gene disruption and (2) to analyze mechanisms of acquired drug resistance by site-specific gene editing using templated homology-directed repair. This flexible system has broad application to other explant models and substantially augments the utility of PDXs as genetically programmable models of human cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43018-020-0040-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7745982PMC
March 2020

Concurrent Mutations in STK11 and KEAP1 Promote Ferroptosis Protection and SCD1 Dependence in Lung Cancer.

Cell Rep 2020 12;33(9):108444

Graduate Program in Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Electronic address:

Concurrent loss-of-function mutations in STK11 and KEAP1 in lung adenocarcinoma (LUAD) are associated with aggressive tumor growth, resistance to available therapies, and early death. We investigated the effects of coordinate STK11 and KEAP1 loss by comparing co-mutant with single mutant and wild-type isogenic counterparts in multiple LUAD models. STK11/KEAP1 co-mutation results in significantly elevated expression of ferroptosis-protective genes, including SCD and AKR1C1/2/3, and resistance to pharmacologically induced ferroptosis. CRISPR screening further nominates SCD (SCD1) as selectively essential in STK11/KEAP1 co-mutant LUAD. Genetic and pharmacological inhibition of SCD1 confirms the essentiality of this gene and augments the effects of ferroptosis induction by erastin and RSL3. Together these data identify SCD1 as a selective vulnerability and a promising candidate for targeted drug development in STK11/KEAP1 co-mutant LUAD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2020.108444DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7722473PMC
December 2020

Publisher Correction: Lineage plasticity in cancer: a shared pathway of therapeutic resistance.

Nat Rev Clin Oncol 2020 Jun;17(6):382

Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41571-020-0355-5DOI Listing
June 2020

Lineage plasticity in cancer: a shared pathway of therapeutic resistance.

Nat Rev Clin Oncol 2020 06 9;17(6):360-371. Epub 2020 Mar 9.

Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Lineage plasticity, the ability of cells to transition from one committed developmental pathway to another, has been proposed as a source of intratumoural heterogeneity and of tumour adaptation to an adverse tumour microenvironment including exposure to targeted anticancer treatments. Tumour cell conversion into a different histological subtype has been associated with a loss of dependency on the original oncogenic driver, leading to therapeutic resistance. A well-known pathway of lineage plasticity in cancer - the histological transformation of adenocarcinomas to aggressive neuroendocrine derivatives - was initially described in lung cancers harbouring an EGFR mutation, and was subsequently reported in multiple other adenocarcinomas, including prostate cancer in the presence of antiandrogens. Squamous transformation is a subsequently identified and less well-characterized pathway of adenocarcinoma escape from suppressive anticancer therapy. The increased practice of tumour re-biopsy upon disease progression has increased the recognition of these mechanisms of resistance and has improved our understanding of the underlying biology. In this Review, we provide an overview of the impact of lineage plasticity on cancer progression and therapy resistance, with a focus on neuroendocrine transformation in lung and prostate tumours. We discuss the current understanding of the molecular drivers of this phenomenon, emerging management strategies and open questions in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41571-020-0340-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397755PMC
June 2020

FGFR1 and FGFR4 oncogenicity depends on n-cadherin and their co-expression may predict FGFR-targeted therapy efficacy.

EBioMedicine 2020 Mar 27;53:102683. Epub 2020 Feb 27.

H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain; Medical Oncology Department, Hospital Universitario Doce de Octubre. Madrid, Spain; Medical School, Universidad Complutense, Madrid, Spain.

Background: Fibroblast growth factor receptor (FGFR)1 and FGFR4 have been associated with tumorigenesis in a variety of tumour types. As a therapeutic approach, their inhibition has been attempted in different types of malignancies, including lung cancer, and was initially focused on FGFR1-amplified tumours, though with limited success.

Methods: In vitro and in vivo functional assessments of the oncogenic potential of downregulated/overexpressed genes in isogenic cell lines were performed, as well as inhibitor efficacy tests in vitro and in vivo in patient-derived xenografts (PDXs). mRNA was extracted from FFPE non-small cell lung cancer samples to determine the prognostic potential of the genes under study.

Findings: We provide in vitro and in vivo evidence showing that expression of the adhesion molecule N-cadherin is key for the oncogenic role of FGFR1/4 in non-small cell lung cancer. According to this, assessment of the expression of genes in different lung cancer patient cohorts showed that FGFR1 or FGFR4 expression alone showed no prognostic potential, and that only co-expression of FGFR1 and/or FGFR4 with N-cadherin inferred a poorer outcome. Treatment of high-FGFR1 and/or FGFR4-expressing lung cancer cell lines and patient-derived xenografts with selective FGFR inhibitors showed high efficacy, but only in models with high FGFR1/4 and N-cadherin expression.

Interpretation: Our data show that the determination of the expression of FGFR1 or FGFR4 alone is not sufficient to predict anti-FGFR therapy efficacy; complementary determination of N-cadherin expression may further optimise patient selection for this therapeutic strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2020.102683DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7047190PMC
March 2020

Epigenetics of lung cancer: a translational perspective.

Cell Oncol (Dordr) 2019 Dec 8;42(6):739-756. Epub 2019 Aug 8.

Unidad Clínica de Oncología Médica, Radioterapia y Radiofísica, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Avda. Manuel Siurot s/n, 41013, Seville, Spain.

Background: Lung cancer remains the most common cause of cancer-related death, with a 5-year survival rate of only 18%. In recent years, the development of targeted pharmacological agents and immunotherapies has substantially increased the survival of a subset of patients. However, most patients lack such efficacious therapy and are, thus, treated with classical chemotherapy with poor clinical outcomes. Therefore, novel therapeutic strategies are urgently needed. In recent years, the development of epigenetic assays and their application to cancer research have highlighted the relevance of epigenetic regulation in the initiation, development, progression and treatment of lung cancer.

Conclusions: A variety of epigenetic modifications do occur at different steps of lung cancer development, some of which are key to tumor progression. The rise of cutting-edge technologies such as single cell epigenomics is, and will continue to be, crucial for uncovering epigenetic events at a single cell resolution, leading to a better understanding of the biology underlying lung cancer development and to the design of novel therapeutic options. This approach has already led to the development of strategies involving single agents or combined agents targeting epigenetic modifiers, currently in clinical trials. Here, we will discuss the epigenetics of every step of lung cancer development, as well as the translation of these findings into clinical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13402-019-00465-9DOI Listing
December 2019

Impact of Heat Shock Protein 90 Inhibition on the Proteomic Profile of Lung Adenocarcinoma as Measured by Two-Dimensional Electrophoresis Coupled with Mass Spectrometry.

Cells 2019 07 31;8(8). Epub 2019 Jul 31.

H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.

Heat shock protein 90 (HSP90) is an important chaperone in lung adenocarcinoma, with relevant protein drivers such as EGFR (epidermal growth factor receptor) and EML4-ALK (echinoderm microtubule-associated protein-like protein4 fused to anaplastic lymphoma kinase) depending on it for their correct function, therefore HSP90 inhibitors show promise as potential treatments for lung adenocarcinoma. To study responses to its inhibition, HSP90 was pharmacologically interrupted by geldanamycin and resorcinol derivatives or with combined inhibition of HSP90 plus HSP70 in lung adenocarcinoma cell lines. Two-dimensional electrophoresis was performed to identify proteomic profiles associated with inhibition which will help to understand the biological basis for the responses. HSP90 inhibition resulted in altered protein profiles that differed according the treatment condition studied. Results revealed 254 differentially expressed proteins after treatments, among which, eukaryotic translation initiation factor3 subunit I (eIF3i) and citrate synthase demonstrated their potential role as response biomarkers. The differentially expressed proteins also enabled signalling pathways involved in responses to be identified; these included apoptosis, serine-glycine biosynthesis and tricarboxylic acid cycle. The proteomic profiles identified here contribute to an improved understanding of HSP90 inhibition and open possibilities for the detection of potential response biomarkers which will be essential to maximize treatment efficacy in lung adenocarcinoma.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells8080806DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721529PMC
July 2019

Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes.

J Thorac Oncol 2019 10 19;14(10):1784-1793. Epub 2019 Jun 19.

Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Weill Cornell Medical College, New York, New York. Electronic address:

Introduction: EGFR-mutant lung cancers are clinically and genomically heterogeneous with concurrent RB transcriptional corepressor 1 (RB1)/tumor protein p53 (TP53) alterations identifying a subset at increased risk for small cell transformation. The genomic alterations that induce lineage plasticity are unknown.

Methods: Patients with EGFR/RB1/TP53-mutant lung cancers, identified by next-generation sequencing from 2014 to 2018, were compared to patients with untreated, metastatic EGFR-mutant lung cancers without both RB1 and TP53 alterations. Time to EGFR-tyrosine kinase inhibitor discontinuation, overall survival, SCLC transformation rate, and genomic alterations were evaluated.

Results: Patients with EGFR/RB1/TP53-mutant lung cancers represented 5% (43 of 863) of EGFR-mutant lung cancers but were uniquely at risk for transformation (7 of 39, 18%), with no transformations in EGFR-mutant lung cancers without baseline TP53 and RB1 alterations. Irrespective of transformation, patients with EGFR/TP53/RB1-mutant lung cancers had a shorter time to discontinuation than EGFR/TP53- and EGFR-mutant -only cancers (9.5 versus 12.3 versus 36.6 months, respectively, p = 2 × 10). The triple-mutant population had a higher incidence of whole-genome doubling compared to NSCLC and SCLC at large (80% versus 34%, p < 5 × 10 versus 51%, p < 0.002, respectively) and further enrichment in triple-mutant cancers with eventual small cell histology (seven of seven pre-transformed plus four of four baseline SCLC versus 23 of 32 never transformed, respectively, p = 0.05). Activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like mutation signature was also enriched in triple-mutant lung cancers that transformed (false discovery rate = 0.03).

Conclusions: EGFR/TP53/RB1-mutant lung cancers are at unique risk of histologic transformation, with 25% presenting with de novo SCLC or eventual small cell transformation. Triple-mutant lung cancers are enriched in whole-genome doubling and Activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like hypermutation which may represent early genomic determinants of lineage plasticity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtho.2019.06.002DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6764905PMC
October 2019

A patent review of FGFR4 selective inhibition in cancer (2007-2018).

Expert Opin Ther Pat 2019 06 30;29(6):429-438. Epub 2019 May 30.

b CNIO-H12O Lung Clinical Cancer Research Unit , Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO) , Madrid , Spain.

Introduction: FGFR4 is a tyrosine kinase receptor which, under physiological conditions, is activated upon ligand binding in a highly regulated manner. This triggers downstream signaling related to proliferation and apoptosis resistance as well as other physiological processes. Many molecular alterations of the receptor and its ligands, specially FGF19, have been reported in several types of cancer, with special relevance in hepatocellular carcinoma. In addition, these have also been detected in other solid malignancies, including lung, breast, or colon cancer, among others.

Areas Covered: This review covers patent literature on specific FGFR4 inhibitors and their applications, published from 2007 to June 2018.

Expert Opinion: FGFR4 inhibition has gained relevance in oncology. A considerable number of patents disclosing different approaches to inhibit this receptor have been reported, displaying promising preclinical results for different cancer models. Currently, the safety and preliminary efficacy of several small molecule inhibitors targeting FGFR4 are under early phase clinical assessment, mainly in hepatocellular carcinoma patients. If positive results are derived from these trials, they will open the door for the application of FGFR4 small molecule inhibitors to a wide population of tumors of different types that harbor FGFR4-FGF19 signaling dysregulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/13543776.2019.1624720DOI Listing
June 2019

FGFR4 increases EGFR oncogenic signaling in lung adenocarcinoma, and their combined inhibition is highly effective.

Lung Cancer 2019 05 8;131:112-121. Epub 2019 Feb 8.

H120-CNIO Lung Cancer Clinical Cancer Research Unit, Fundación de Investigación Biomédica i+12 & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Medical School, Universidad Complutense, Madrid, Spain; CIBERONC, Madrid, Spain. Electronic address:

Objectives: Lung adenocarcinoma accounts for approximately half of lung cancer cases. Twenty to 50% of tumors of this type harbor mutations affecting epidermal growth factor receptor (EGFR) expression or activity, which can be therapeutically targeted. EGFR inhibitors in this context exhibit high efficacy and are currently used in the clinical setting. However, not all adenocarcinomas harboring EGFR mutations respond to therapy, so predictive biomarkers of therapeutic outcomes, as well as novel therapies sensitizing these tumors to EGFR inhibition, are needed.

Materials And Methods: We performed in vitro gene overexpression/silencing and tumorigenic surrogate assays, as well as in vitro and in vivo combination treatments with Fibroblast Growth Factor Receptor (FGFR)/EGFR inhibitors. At the clinical level, we determined FGFR4 expression levels in tumors from patients treated with EGFR inhibitors and correlated these with treatment response.

Results: We describe a cooperative interaction between EGFR and FGFR4, which results in their reciprocal activation with pro-oncogenic consequences in vitro and in vivo. This cooperation is independent of EGFR activating mutations and increases resistance to different EGFR inhibitors. At the therapeutic level, we provide evidence of the synergistic effects of the combination of EGFR and FGFR inhibitors in high FGFR4-expressing, EGFR-activated tumors in vitro and in vivo. Correlated with these results, we found that patients treated with EGFR inhibitors relapse earlier when their tumors exhibit high FGFR4 expression.

Conclusions: We propose a novel predictive biomarker for EGFR-targeted therapy, and a highly efficacious combinatory therapeutic strategy to treat EGFR-dependent; this may may extend the use of appropriate inhibitors beyond EGFR-mutated adenocarcinoma patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lungcan.2019.02.007DOI Listing
May 2019

FGFR1 Cooperates with EGFR in Lung Cancer Oncogenesis, and Their Combined Inhibition Shows Improved Efficacy.

J Thorac Oncol 2019 04 9;14(4):641-655. Epub 2019 Jan 9.

H12O-CNIO Lung Cancer Clinical Research Unit, Biomedical Research Foundation i+12, Madrid, Spain; H12O-CNIO Lung Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; CIBERONC, Madrid, Spain; Medical Oncology Department, University Hospital Doce de Octubre Madrid, Spain; Medical School, Complutense University, Madrid, Spain.

Introduction: There is substantial evidence for the oncogenic effects of fibroblast growth factor receptor 1 (FGFR1) in many types of cancer, including lung cancer, but the role of this receptor has not been addressed specifically in lung adenocarcinoma.

Methods: We performed FGFR1 and EGFR overexpression and co-overexpression assays in adenocarcinoma and in inmortalized lung cell lines, and we also carried out surrogate and interaction assays. We performed monotherapy and combination EGFR/FGFR inhibitor sensitivity assays in vitro and in vivo in cell line- and patient-derived xenografts. We determined FGFR1 mRNA expression in a cohort of patients with anti-EGFR therapy-treated adenocarcinoma.

Results: We have reported a cooperative interaction between FGFR1 and EGFR in this context, resulting in increased EGFR activation and oncogenic signaling. We have provided in vitro and in vivo evidence indicating that FGFR1 expression increases tumorigenicity in cells with high EGFR activation in EGFR-mutated and EGFR wild-type models. At the clinical level, we have shown that high FGFR1 expression levels predict higher resistance to erlotinib or gefitinib in a cohort of patients with tyrosine kinase inhibitor-treated EGFR-mutated and EGFR wild-type lung adenocarcinoma. Dual EGFR and FGFR inhibition in FGFR1-overexpressing, EGFR-activated models shows synergistic effects on tumor growth in vitro and in cell line- and patient-derived xenografts, suggesting that patients with tumors bearing these characteristics may benefit from combined EGFR/FGFR inhibition.

Conclusion: These results support the extended the use of EGFR inhibitors beyond monotherapy in the EGFR-mutated adenocarcinoma setting in combination with FGFR inhibitors for selected patients with increased FGFR1 overexpression and EGFR activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtho.2018.12.021DOI Listing
April 2019

MAP17 predicts sensitivity to platinum-based therapy, EGFR inhibitors and the proteasome inhibitor bortezomib in lung adenocarcinoma.

J Exp Clin Cancer Res 2018 Aug 17;37(1):195. Epub 2018 Aug 17.

CIBER de Cáncer, ISCIII, Madrid, Spain.

Background: The high incidence and mortality of lung tumours is a major health problem. Therefore, the identification both of biomarkers predicting efficacy for therapies in use and of novel efficacious therapeutic agents is crucial to increase patient survival. MAP17 (PDZK1IP1) is a small membrane-bound protein whose upregulation is reported as a common feature in tumours from diverse histological origins. Furthermore, MAP17 is correlated with tumour progression.

Methods: We assessed the expression of MAP17 in preclinical models, including cell lines and patient-derived xenografts (PDXs), assessing its correlation with sensitivity to different standard-of-care drugs in lung adenocarcinoma, as well as novel drugs. At the clinical level, we subsequently correlated MAP17 expression in human tumours with patient response to these therapies.

Results: We show that MAP17 expression is induced during lung tumourigenesis, particularly in lung adenocarcinomas, and provide in vitro and in vivo evidence that MAP17 levels predict sensitivity to therapies currently under clinical use in adenocarcinoma tumours, including cisplatin, carboplatin and EGFR inhibitors. In addition, we show that MAP17 expression predicts proteasome inhibitor efficacy in this context and that bortezomib, an FDA-approved drug, may be a novel therapeutic approach for MAP17-overexpressing lung adenocarcinomas.

Conclusions: Our results indicate a potential prognostic role for MAP17 in lung tumours, with particular relevance in lung adenocarcinomas, and highlight the predictive pot0065ntial of this membrane-associated protein for platinum-based therapy and EGFR inhibitor efficacy. Furthermore, we propose bortezomib treatment as a novel and efficacious therapy for lung adenocarcinomas exhibiting high MAP17 expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13046-018-0871-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6098621PMC
August 2018

Histology-dependent prognostic role of pERK and p53 protein levels in early-stage non-small cell lung cancer.

Oncotarget 2018 Apr 13;9(28):19945-19960. Epub 2018 Apr 13.

H120-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación 12 de Octubre and CNIO, Madrid, Spain.

Lung tumors represent a major health problem. In early stage NSCLC tumors, surgical resection is the preferred treatment, but 30-55% of patients will relapse within 5 years after surgery. Thus, the identification of prognostic biomarkers in early stage NSCLC patients, especially those which are therapeutically addressable, is crucial to enhance survival of these patients. We determined the immunohistochemistry expression of key proteins involved in tumorigenesis and oncogenic signaling, p53, EGFR, pAKT and pERK, and correlated their expression level to clinicopathological characteristics and patient outcome. We found EGFR expression is higher in the squamous cell carcinomas than in adenocarcinomas (p=0.043), and that nuclear p53 staining correlated with lower differentiated squamous tumors (p=0.034). Regarding the prognostic potential of the expression of these proteins, high pERK levels proved to be an independent prognostic factor for overall (p<0.001) and progression-free survival (p<0.001) in adenocarcinoma patients, but not in those from the squamous histology, and high p53 nuclear levels were identified as independent prognostic factor for progression-free survival (p=0.031) only in squamous cell carcinoma patients. We propose a role as early prognostic biomarkers for pERK protein levels in adenocarcinoma, and for nuclear p53 levels in squamous cell lung carcinoma. The determination of these potential biomarkers in the adequate histologic context may predict the outcome of early stage NSCLC patients, and may offer a therapeutic opportunity to enhance survival of these patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.24977DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5929438PMC
April 2018

The FGFR4-388arg Variant Promotes Lung Cancer Progression by N-Cadherin Induction.

Sci Rep 2018 02 5;8(1):2394. Epub 2018 Feb 5.

Medical Oncology Department, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.

The FGFR4-388Arg variant has been related to poor prognosis in several types of cancer, including lung cancer. The mechanism underlying this association has not been addressed in detail in patients with this pathology. Here, we report that this FGFR4 variant induces MAPK and STAT3 activation and causes pro-oncogenic effects in NSCLC in vitro and in vivo. This variant induces the expression of EMT-related genes, such as N-cadherin, vimentin, Snail1 and Twist1. Indeed, the induction of N-cadherin protein expression by this variant is essential for its pro-tumorigenic role. The presence of the FGFR4-388Arg variant correlates with higher N-cadherin expression levels in clinical NSCLC samples and with poorer outcome in patients with FGFR expression. These results support the prognostic role of this FGFR variant in lung cancer and show that these effects may be mediated by the induction of N-cadherin expression and an EMT phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-20570-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5799167PMC
February 2018

Coordinated downregulation of Spinophilin and the catalytic subunits of PP1, PPP1CA/B/C, contributes to a worse prognosis in lung cancer.

Oncotarget 2017 Dec 26;8(62):105196-105210. Epub 2017 Oct 26.

Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.

The scaffold protein Spinophilin (Spinophilin, PPP1R9B) is one of the regulatory subunits of phosphatase-1 (PP1), directing it to distinct subcellular locations and targets. The loss of Spinophilin reduces PP1 targeting to pRb, thereby maintaining higher levels of phosphorylated pRb. Spinophilin is absent or reduced in approximately 40% of human lung tumors, correlating with the malignant grade. However, little is known about the relevance of the coordinated activity or presence of Spinophilin and its reported catalytic partners in the prognosis of lung cancer. In the present work, we show that the downregulation of Spinophilin, either by protein or mRNA, is related to a worse prognosis in lung tumors. This effect is more relevant in squamous cell carcinoma, SCC, than in adenocarcinoma. Downregulation of Spinophilin is related to a decrease in the levels of its partners PPP1CA/B/C, the catalytic subunits of PP1. A decrease in these subunits is also related to prognosis in SCC and, in combination with a decrease in Spinophilin, are markers of a poor prognosis in these tumors. The analysis of the genes that correlate to Spinophilin in lung tumors showed clear enrichment in ATP biosynthesis and protein degradation GO pathways. The analysis of the response to several common and pathway-related drugs indicates a direct correlation between the Spinophilin/PPP1Cs ratio and the response to oxaliplatin and bortezomib. This finding indicates that this ratio may be a good predictive biomarker for the activity of the drugs in these tumors with a poor prognosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.22111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739631PMC
December 2017

Prognostic Role of the FGFR4-388Arg Variant in Lung Squamous-Cell Carcinoma Patients With Lymph Node Involvement.

Clin Lung Cancer 2017 11 10;18(6):667-674.e1. Epub 2017 May 10.

Department of Medical Oncology, Hospital Universitario Doce de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Medical School, Universidad Complutense, Madrid, Spain. Electronic address:

Background: The identification of prognostic biomarkers for lung squamous-cell carcinoma (SCC) pathology is crucial because of its poor prognosis. A variant of the FGFR4 (fibroblast growth factor receptor 4) gene, FGFR4-388Arg, has been associated with prognosis and is linked to oncogenesis in vitro in several types of cancer. We analyzed the association of this variant with prognosis and downstream signaling alteration in lung SCC patients.

Methods: The presence of the FGFR4-388Arg variant was determined in 114 formalin-fixed, paraffin-embedded lung SCC tissue samples by DNA genotyping and was correlated with clinicopathologic data. The activation of the protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) pathways was determined by immunohistochemistry, and its association with the presence of FGFR4-388Arg was analyzed.

Results: We found that tumor differentiation status and adjuvant chemotherapy administration could be independent prognostic factors for overall survival (OS) in lymph node-affected patients, as expected. The progression-free survival and OS of patients with lymph node involvement (n = 41) and the FGFR4-388Arg genotype were significantly lower than those of patients lacking this variant (P = .035 and P = .042, respectively). Importantly, multivariate analysis supported the independent prognostic role of the FGFR4-388Arg genotype in OS (P = .025). Regarding downstream signaling, the FGFR4-388Arg genotype was not correlated with altered AKT signaling but was associated with increased MAPK activation in the SCC tumor samples (P = .017).

Conclusion: The FGFR4-388Arg variant may represent a promising prognostic biomarker in SCC patients with lymph node involvement. For these patients, FGFR4 may be a potential therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cllc.2017.05.008DOI Listing
November 2017

IL-11 and CCL-1: Novel Protein Diagnostic Biomarkers of Lung Adenocarcinoma in Bronchoalveolar Lavage Fluid (BALF).

J Thorac Oncol 2016 12 12;11(12):2183-2192. Epub 2016 Aug 12.

Biomedicine Institute of Seville-IBIS (Virgen del Rocio University Hospital, US, CSIC), Seville, Spain. Electronic address:

Introduction: Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are smoking-related diseases, with the presence of COPD itself increasing the risk for development of LC, probably owing to underlying inflammation. LC is typically detected at late stages of the disease and carries a poor prognosis. There is an unmet need for methods to facilitate the early detection of LC in high-risk subjects such as smokers.

Methods: The expression of inflammatory proteins in bronchoalveolar lavage fluid (BALF) samples was studied by antibody arrays in a prospective cohort of 60 smokers of more than 30 pack-years divided into four groups (control, patients with LC, patients with COPD, and patients with LC plus COPD). Relevant biomarkers were validated by Western blot. Additional validation with enzyme-linked immunosorbent assay (ELISA) was carried out on two independent controlled cohorts of 139 patients (control, patients with LC, patients with COPD, and patients with LC plus COPD) and 160 patients (control and patients with LC of all histological types).

Results: A total of 16 differentially expressed proteins in samples from patients with LC, COPD, and LC plus COPD were identified by antibody arrays and validated by Western blot and ELISA. C-C motif chemokine ligand 1 (CCL-1) and interleukin-11 (IL)-11 were selectively expressed in samples from patients with adenocarcinoma with or without COPD (p < 0.005). These proteins exhibited a remarkable diagnostic performance for lung adenocarcinoma in an independent cohort of 139 patients. Receiver operating characteristic curves showed that the optimum diagnostic cutoff value for IL-11 was 42 pg/mL (area under the curve = 0.93 [95% confidence interval: 0.896-0.975], sensitivity 90%, specificity 86%), whereas for CCL-1 it was 39.5 pg/mL (0.83 [95% confidence interval: 0.749-0.902], sensitivity 83%, and specificity 74%). Further validation of the ELISA biomarkers at the aforementioned cutoffs was performed in an additional cohort of 160 patients (20 controls, 66 patients with LC, and 74 patients with LC plus COPD). There was a significant correlation between BALF levels of IL-11 and CCL-1 (r = 0.76, p < 0.001), and the use of both biomarkers increased the diagnostic accuracy to 96.1% in the two validation cohorts. Appropriate diagnostic performance was observed for all subgroups regardless of stage at diagnosis, involvement of the bronchial tract, pack-years smoked, and number of cells in BALF.

Conclusions: IL-11 and CCL-1 are highly specific biomarkers with great accuracy for the diagnosis of lung adenocarcinoma in BALF specimens. Further study of these proteins as markers for the early diagnosis and screening of plasma and other biological materials is warranted.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtho.2016.07.026DOI Listing
December 2016

Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization.

FEMS Microbiol Ecol 2012 Sep 21;81(3):562-73. Epub 2012 May 21.

Department of Biology, New Mexico State University, Las Cruces, NM 88003-8001, USA.

Biofilms are increasingly recognized as being the predominant form for survival for most bacteria in the environment. The successful colonization of Vibrio fischeri in its squid host Euprymna tasmanica involves complex microbe-host interactions mediated by specific genes that are essential for biofilm formation and colonization. Here, structural and regulatory genes were selected to study their role in biofilm formation and host colonization. We have mutated several genes (pilT, pilU, flgF, motY, ibpA and mifB) by an insertional inactivation strategy. The results demonstrate that structural genes responsible for synthesis of type IV pili and flagella are crucial for biofilm formation and host infection. Moreover, regulatory genes affect colony aggregation by various mechanisms, including alteration of synthesis of transcriptional factors and regulation of extracellular polysaccharide production. These results reflect the significance of how genetic alterations influence communal behavior, which is important in understanding symbiotic relationships.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2012.01386.xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418483PMC
September 2012