Genetic modifiers and subtypes in schizophrenia: investigations of age at onset, severity, sex and family history.

Schizophrenia is a genetically and clinically heterogeneous disorder. Genetic risk factors for the disorder may differ between the sexes or between multiply affected families compared to cases with no family history. Additionally, limited data support a genetic basis for variation in onset and severity, but specific loci have not been identified. We performed genome-wide association studies (GWAS) examining genetic influences on age at onset (AAO) and illness severity as well as specific risk by sex or family history status using up to 2762 cases and 3187 controls from the International Schizophrenia Consortium (ISC). Subjects with a family history of schizophrenia demonstrated a slightly lower average AAO that was not significant following multiple testing correction (p=.048), but no differences in illness severity were observed by family history status (p=.51). Consistent with prior reports, we observed earlier AAO (p=.005) and a more severe course of illness for men (p=.002). Family history positive analyses showed the greatest association with KIF5C (p=1.96×10(-8)), however, genetic risk burden overall does not differ by family history. Separate association analyses for males and females revealed no significant sex-specific associations. The top GWAS hit for AAO was near the olfactory receptor gene OR2K2 (p=1.52×10(-7)). Analyses of illness severity (episodic vs. continuous) implicated variation in ST18 (p=8.24×10(-7)). These results confirm recognized demographic relationships but do not support a simplified genetic architecture for schizophrenia subtypes based on these variables.

Affiliation

Neuropsychiatric Genetics Research Group, Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.

Similar Publications

Schizophrenia is a genetically and clinically heterogeneous disorder. Genetic risk factors for the disorder may differ between the sexes or between multiply affected families compared to cases with no family history. Additionally, limited data support a genetic basis for variation in onset and severity, but specific loci have not been identified. We performed genome-wide association studies (GWAS) examining genetic influences on age at onset (AAO) and illness severity as well as specific risk by sex or family history status using up to 2762 cases and 3187 controls from the International Schizophrenia Consortium (ISC). Subjects with a family history of schizophrenia demonstrated a slightly lower average AAO that was not significant following multiple testing correction (p=.048), but no differences in illness severity were observed by family history status (p=.51). Consistent with prior reports, we observed earlier AAO (p=.005) and a more severe course of illness for men (p=.002). Family history positive analyses showed the greatest association with KIF5C (p=1.96×10(-8)), however, genetic risk burden overall does not differ by family history. Separate association analyses for males and females revealed no significant sex-specific associations. The top GWAS hit for AAO was near the olfactory receptor gene OR2K2 (p=1.52×10(-7)). Analyses of illness severity (episodic vs. continuous) implicated variation in ST18 (p=8.24×10(-7)). These results confirm recognized demographic relationships but do not support a simplified genetic architecture for schizophrenia subtypes based on these variables.

The authors used a genome-wide association study (GWAS) of multiply affected families to investigate the association of schizophrenia to common single-nucleotide polymorphisms (SNPs) and rare copy number variants (CNVs).
The family sample included 2,461 individuals from 631 pedigrees (581 in the primary European-ancestry analyses). Association was tested for single SNPs and genetic pathways. Polygenic scores based on family study results were used to predict case-control status in the Schizophrenia Psychiatric GWAS Consortium (PGC) data set, and consistency of direction of effect with the family study was determined for top SNPs in the PGC GWAS analysis. Within-family segregation was examined for schizophrenia-associated rare CNVs.
No genome-wide significant associations were observed for single SNPs or for pathways. PGC case and control subjects had significantly different genome-wide polygenic scores (computed by weighting their genotypes by log-odds ratios from the family study) (best p=10(-17), explaining 0.4% of the variance). Family study and PGC analyses had consistent directions for 37 of the 58 independent best PGC SNPs (p=0.024). The overall frequency of CNVs in regions with reported associations with schizophrenia (chromosomes 1q21.1, 15q13.3, 16p11.2, and 22q11.2 and the neurexin-1 gene [NRXN1]) was similar to previous case-control studies. NRXN1 deletions and 16p11.2 duplications (both of which were transmitted from parents) and 22q11.2 deletions (de novo in four cases) did not segregate with schizophrenia in families.
Many common SNPs are likely to contribute to schizophrenia risk, with substantial overlap in genetic risk factors between multiply affected families and cases in large case-control studies. Our findings are consistent with a role for specific CNVs in disease pathogenesis, but the partial segregation of some CNVs with schizophrenia suggests that researchers should exercise caution in using them for predictive genetic testing until their effects in diverse populations have been fully studied.

Genotype-phenotype correlations of common monogenic diseases revealed that the degree of deviation of mutant genes from wild-type structure and function often predicts disease onset and severity. In complex disorders such as schizophrenia, the overall genetic risk is still often >50% but genotype-phenotype relationships are unclear. Recent genome-wide association studies (GWAS) replicated a risk for several single-nucleotide polymorphisms (SNPs) regarding the endpoint diagnosis of schizophrenia. The biological relevance of these SNPs, however, for phenotypes or severity of schizophrenia has remained obscure. We hypothesized that the GWAS 'top-10' should as single markers, but even more so upon their accumulation, display associations with lead features of schizophrenia, namely positive and negative symptoms, cognitive deficits and neurological signs (including catatonia), and/or with age of onset of the disease prodrome as developmental readout and predictor of disease severity. For testing this hypothesis, we took an approach complementary to GWAS, and performed a phenotype-based genetic association study (PGAS). We utilized the to our knowledge worldwide largest phenotypical database of schizophrenic patients (n>1000), the GRAS (Göttingen Research Association for Schizophrenia) Data Collection. We found that the 'top-10' GWAS-identified risk SNPs neither as single markers nor when explored in the sense of a cumulative genetic risk, have any predictive value for disease onset or severity in the schizophrenic patients, as demonstrated across all core symptoms. We conclude that GWAS does not extract disease genes of general significance in schizophrenia, but may yield, on a hypothesis-free basis, candidate genes relevant for defining disease subgroups.

2011Sep
Am. J. Med. Genet. B Neuropsychiatr. Genet.
Am J Med Genet B Neuropsychiatr Genet 2011 Sep 17;156B(6):671-80. Epub 2011 Jun 17.

We performed a genome-wide association analysis to identify genetic variants influencing age at onset (AAO) and examine gene × gender interactions for AAO in schizophrenia (SCZ) using a European-American sample (1,162 cases). Linear regression model in PLINK was used to test for associations with AAO while the GxE option was chosen to test for the influence of gene × gender interactions. The most significant association with AAO was observed with SNP rs7819815 (P = 3.10×10(-7)) at 8q24.22. The next best signal was at 4q25 in COL25A1 gene (rs17039583, P = 4.30×10(-6)) and the third region was at 4p16.1 (rs17407555, P = 4.56×10(-6) , near RAF1P1, and rs4697924, P = 1.23×10(-5) within WDR1 gene). Conditional analysis on chromosome 4 indicated that 4p16.1 and 4q25 loci were independent. Furthermore, 2 SNPs (rs16834822 and rs16834824) at 1q43 in RYR2 showed strong associations in the female sample (P = 2.10×10(-6) and 2.33×10(-6) , respectively) and strong gene × gender interactions in influencing AAO (P = 9.23×10(-7) and 1.15×10(-6) , respectively) while the second best region showing gene × gender interaction was at 7q22.3 (rs179863, P = 2.33×10(-6) ). Using an independent sample of 1,068 cases, we could not replicate the associations for above top SNPs; however, we found nominal significance associations for their flanking SNPs (P < 0.05). These findings provide evidence of several genetic variants influencing AAO of SCZ.

A large number of studies has investigated the hypothesis that DRD4 48 bp variable number of tandem repeat (VNTR) polymorphism is involved in the etiology of schizophrenia and bipolar disorder. However, the results are inconsistent likely due to genetic and phenotypic heterogeneity. Age at onset (AAO) is considered an important alternate phenotype for genetic investigations of psychiatric disorders. In the present study, the DRD4 VNTR 7 repeat allele (7R) was examined in 477 patients with major psychoses. Age at onset was defined as the age of first psychotic episode for schizophrenia and the age at appearance of first clinically recognized symptoms for the bipolar sample. Our results showed an interaction between sex and DRD4 genotypes among schizophrenia patients (n=203, β=.213, p=.017). On comparing AAO between carriers and non-carriers of the 7R, we observed that females with 7R present had later onset (p=.021). The effect was not observed for males. In the sample with bipolar disorder, we observed significant association between DRD4 7R-genotype and AAO (n=274, β=-.148, p=.012). No interaction was observed between sex and genotypic groups of the bipolar sample. The 7R was associated with early onset of the bipolar illness (p=.028). In summary, our results suggest that the 7R is associated with AAO in both schizophrenia and bipolar disorders. The effect was observed across both sexes in bipolar disorder, but specifically in females for schizophrenia.


Research and Laboratory Jobs in Ashburn
View All Jobs

Affiliation Details

  • Neuropsychiatric Genetics Research Group, Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.
  • Neuropsychiatric Genetics Research Group
Affiliation Neuropsychiatric Genetics Research Group, Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin 2, Ireland.